
Review Packet for Exam #3

Math 121-D. Benedetto

Interval of Convergence: Find the Interval and Radius of Convergence for each of the
following power series. Analyze convergence at the endpoints carefully, with full justification.
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Estimates: Use a Power Series Representation for each of the following functions to esti-
mate each one within the given error. ESTIMATE ...
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MacLaurin Series: Find the MacLaurin Series for each of the following functions, and
state the corresponding Radius of Convergence. Answer in Sigma notation.
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Power Series Representations of Functions: Use a Power Series Representation for
each of the following functions to compute the given integral. ESTIMATE each one within
the given error.
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Sums: Find the sum for each of the following series.
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Limits: Compute each of the following limits in two ways: first using L’H Rule and second
using series.

51. lim
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Sequence Limits: Use Series to show that
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Integrals: Use Series to compute
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∞∑
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∞∑
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Derivations of MacLaurin Series: Solving for +C is needed if using Integration

60. Prove the MacLaurin Series formula for arctan x.

61. Use two different methods to Prove the MacLaurin Series formula for ln(1 + x).

62. Use two different methods to Prove the MacLaurin Series formula for cos x.

63. Use three different methods to Prove the MacLaurin Series formula for sinx.

64. Use two different methods to Prove the MacLaurin Series formula for ln(3 + x).
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