- This is a closed-book examination. No books, notes, calculators, cell phones, communication devices of any sort, or other aids are permitted.
- Numerical answers such as $\sin \left(\frac{\pi}{6}\right), 4^{\frac{3}{2}}, e^{\ln 4}, \ln \left(e^{7}\right), e^{3 \ln 3}, \arctan \sqrt{3}$ or $\cosh (\ln 3)$ should be simplified.
- Please show all of your work and justify all of your answers. (You may use the backs of pages for additional work space.)

1. [26 Points] Analyze carefully and with full justification.
(a) Find the Interval and Radius of Convergence for $\sum_{n=1}^{\infty} \frac{(-1)^{n}(6 x-5)^{n}}{n^{6} \cdot 7^{n}}$.
(b) Show that the MacLaurin Series for $\sin x$ has an Infinite Radius of Convergence.
(c) Design a Power Series which is convergent only at $x=8$. Once you create your series, then proceed to justify that the Interval of Convergence is indeed $I=\{8\}$.
2. [14 Points] Use Series to compute each of the following. State the Radius of Convergence. Your answer should be in sigma notation $\sum_{n=0}^{\infty}$.
(a) $\frac{d}{d x}\left[7 x^{4} \arctan (7 x)\right]$
(b) $\int \frac{x^{3}}{5+x} d x=\int x^{3}\left(\frac{1}{5+x}\right) d x$
3. [12 Points] Use Series to compute $\lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}-2 x}{x^{3}}$.

Check your answer using L'Hôpital's Rule.
4. [10 Points] Use the Series to Estimate $\ln \left(\frac{3}{2}\right)=\ln \left(1+\frac{1}{2}\right)$ with error less than $\frac{1}{50}$. Justify.
5. [28 Points] Find the sum for each of the following convergent series. Simplify, if possible.
(a) $\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n}}{9^{n-1}(2 n+1)!}$
(b) $4+4-\frac{4}{3}+\frac{4}{5}-\frac{4}{7}+\frac{4}{9}-\ldots$
(c) $\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(\pi^{2}\right)^{n+1}}{(\sqrt{6})^{4 n}(2 n)!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n+2}}{(\sqrt{6})^{4 n}(2 n)!}$
(d) $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}(\ln 8)^{n}}{3^{n} n!}$
(e) $-1-1+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\ldots$
(f) $1-\frac{1}{e}+\frac{1}{e^{2} 2!}-\frac{1}{e^{3} 3!}+\frac{1}{e^{4} 4!}-\ldots$
6. [10 Points] Prove the MacLaurin Series formula for $\arctan x$. Yes, show that $C=0$.

Answer should be in Sigma notation $\sum_{n=0}^{\infty}$

OPTIONAL BONUS

Do not attempt these unless you are completely done with the rest of the exam.

OPTIONAL BONUS \#1 Compute $\sum_{n=0}^{\infty} \frac{(-1)^{n}(3 n+2)}{(n+1)(2 n+1) 3^{n+1}}$

