Math 121, Benedetto, Fall 2024 OPTIONAL BONUS HOMEWORK Due Tuesday, December 3rd in Gradescope by 11:59 pm

Directions: You may attempt the following bonus questions. A correct, complete, and fully detailed solution will get you +1 Bonus point each, up to 5 total, on the upcoming Exam 3. You may **not** work with any other people, and the **only** reference sources you may use are your notes and course webpage. **No** other on-line sources. **No** academic dishonesty here.

1. Estimate $\sin\left(\frac{1}{2}\right)$ with error less than $\frac{1}{500,000}$. Simplify to a common denominator.

2. Create a Power Series with Interval of Convergence $\left[-\frac{3}{2}, \frac{4}{5}\right]$. Continue on to justify that this series satisfies this challenge.

3. Find the sum value for $\sum_{n=0}^{\infty} \frac{(-1)^{n+1} \pi^{2n+3}}{(2n+5)!}$

4. Find the sum value for
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{(2n+1)3^n}$$

5. Find the sum value for
$$\sum_{n=2}^{\infty} \frac{(-1)^n \pi^{2n-1}}{2!(256)^{\frac{n}{4}}(2n)!}$$

6. Find the Power Series for
$$\frac{x^7}{(1-3x)^2}$$
.

7. First, compute the Degree 2 Taylor polynomial $T_2(x)$ for $f(x) = \sqrt{x}$ centered at a = 16. Then use this polynomial to Estimate $\sqrt{15}$ by computing $T_2(15)$. Simplify answer to a fraction.

8. Let $f(x) = x^2 \sin(x^3)$. Compute the 22^{nd} and 23^{rd} Derivatives evaluated at 0, that is $f^{[22]}(0)$ and $f^{[23]}(0)$. Do not simplify your answers. Do not compute the derivatives manually.

9. Find the sum value for
$$\sum_{n=0}^{\infty} \frac{(-1)^n (2n+5)\pi^{2n+1}}{(2n+1)!}$$

10. Find the sum value
$$\sum_{n=0}^{\infty} \frac{n^2 (\ln 3)^n}{n!}$$

11. Create a limit $\lim_{x\to 0} \frac{G(x)}{H(x)}$ which equals $-\frac{1}{16}$ and requires 3 applications of L'Hôpital's Rule. The expression $\frac{G(x)}{H(x)}$ must include at least **two** of $\sin x$, $\ln(1 + x)$, $\cos x$, $\arctan x$, and e^x . Continue on to compute the Limit using Series, and then also using the three L'H Rules.