Math 121 Final May 19, 2022

- This is a closed-book examination. No books, notes, calculators, cell phones, communication devices of any sort, or other aids are permitted.
- Numerical answers such as $\sin \left(\frac{\pi}{6}\right), \quad 4^{\frac{3}{2}}, \quad e^{\ln 4}, \ln \left(e^{7}\right), \quad e^{-\ln 5}, \quad e^{3 \ln 3}, \quad \arctan (\sqrt{3})$, or $\cosh (\ln 3)$ should be simplified.
- Please show all of your work and justify all of your answers. (You may use the backs of pages for additional work space.)

1. [16 Points] (a) Use Series to show that $\lim _{x \rightarrow 0} \frac{5 x^{2}+\arctan (3 x)-3 x}{2 x-\sin (2 x)-3 x^{2}}=-\frac{5}{3}$
(b) Compute $\lim _{x \rightarrow 0} \frac{5 x^{2}+\arctan (3 x)-3 x}{2 x-\sin (2 x)-3 x^{2}}$ again using L'Hôpital's Rule.
2. [28 Points] Compute the following integrals. Simplify.
(a) $\int \frac{1}{\left(x^{2}+4\right)^{\frac{7}{2}}} d x$
(b) $\int x \arctan x d x$
(c) $\int \sqrt{9-x^{2}} d x$
(d) Show that $\int_{\ln 2}^{\ln 5} \frac{2 e^{x}}{e^{2 x}-1} d x \stackrel{\text { hint }}{=} \int_{\ln 2}^{\ln 5} \frac{2 e^{x}}{\left(e^{x}\right)^{2}-1} d x=\ln 2$
3. [30 Points] For each of the following Improper integrals, determine whether it Converges or Diverges. If it converges, find its value. Simplify.
(a) $\int_{-1}^{6} \frac{15-x}{x^{2}-6 x-7} d x \quad$ Free Hint: $\frac{15-x}{(x-7)(x+1)} \stackrel{\text { PFD }}{=} \frac{1}{x-7}-\frac{2}{x+1}$
(b) $\int_{-\infty}^{6} \frac{1}{x^{2}-6 x+12} d x$
(c) $\int_{0}^{e} x^{2} \cdot \ln x d x$
(d) $\int_{0}^{\frac{1}{2}} \frac{1}{x \ln x} d x$
4. [24 Points] Find the sum of each of the following series (which do converge). Simplify.
(a) $-\frac{4}{3}+\frac{4}{5}-\frac{4}{7}+\frac{4}{9}-\ldots$
(b) $\frac{1}{e}-\frac{1}{2 e^{2}}+\frac{1}{3 e^{3}}-\frac{1}{4 e^{4}}+\frac{1}{5 e^{5}}-\frac{1}{6 e^{6}}+\ldots$
(c) $2-\frac{\pi^{2}}{2!}+\frac{\pi^{4}}{4!}-\frac{\pi^{6}}{6!}+\frac{\pi^{8}}{8!}-\ldots$
(d) $\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n}}{9^{n}(2 n+1)!}$
(e) $\sum_{n=0}^{\infty} \frac{(-1)^{n+1} 2^{n+1}(\ln 3)^{n}}{3!\cdot n!}$
(f) Show that $\sum_{n=0}^{\infty} \frac{(-2)^{n}-1}{3^{n}}=-\frac{9}{10}$
5. [12 Points] Determine whether each series Converges or Diverges. Name any convergence test(s) you use, justify all of your work.
(a) $\sum_{n=1}^{\infty} \frac{6}{(n+6)^{6}}+\frac{1}{6^{n}}$
(b) $\sum_{n=2}^{\infty} \frac{n^{6}}{\ln n}$
6. [16 Points] Determine whether each given series is Absolutely Convergent or Conditionally Convergent. Name any convergence test(s) you use, justify all of your work.
(a) $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{3}+7}{n^{7}+3}$
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\ldots$
7. [24 Points] Find the Interval and Radius of Convergence for the Series in (a) and (b)
(a) $\sum_{n=1}^{\infty} \frac{(-1)^{n}(3 x+2)^{n}}{(n+7)^{2} 4^{n}}$
(b) $\sum_{n=1}^{\infty} n^{n}(x-7)^{n}$
(c) Show that the MacLaurin Series for $\sin x$ has Infinite Radius of Convergence.
8. [12 Points] (a) Use Series to compute $\frac{d}{d x}\left(6 x^{3} \arctan (6 x)\right)$ Answer in Sigma $\sum_{n=0}^{\infty}$ notation.
(b) Use Series to Estimate $\int_{0}^{1} x^{3} \cos \left(x^{3}\right) d x \quad$ with error less than $\frac{1}{200}$
9. [14 Points] Answers in Sigma $\sum_{n=0}^{\infty}$ notation. State the Radius of Convergence for each.
(a) Find the MacLaurin Series Representation for $\frac{1}{(1+7 x)^{2}}$. Hint: $\frac{1}{(1+7 x)^{2}}=\frac{d}{d x}\left(\frac{-1}{7(1+7 x)}\right)$
(b) Find the MacLaurin Series Representation for $\ln (3+x)$. Hint: $\ln (3+x)=\int \frac{1}{3+x} d x$. Yes, solve for C
10. [24 Points] For each of the following problems, do the following THREE things:
11. Sketch the Polar curve(s) and shade the described bounded region.
12. Set-Up but DO NOT EVALUATE an Integral representing the area of the described bounded region.
13. Set-Up but DO NOT EVALUATE another slightly different Integral representing the same area of the described bounded region.
(a) The Area bounded outside the polar curve $r=2+2 \sin \theta$ and inside $r=6 \sin \theta$.
(b) The Area that lies inside both of the curves $r=2+2 \cos \theta$ and $r=2-2 \cos \theta$.
(c) The Area bounded inside both of the polar curves $r=2 \cos \theta$ and $r=2 \sin \theta$.
(d) The Area bounded outside $r=1-\cos \theta$ and inside $r=-3 \cos \theta$.
