

Math 121 Final Exam May 17-26, 2021 Due Wednesday, May 26, in Gradescope by 11:59 pm ET

• This is an *Open Notes* Exam. You can use materials, homework problems, lecture notes, etc. that you manually worked on.

• There is **NO** Open Internet allowed. You can only access our Main Course Webpage.

• You are not allowed to work on or discuss these problems with **anyone**. You can only ask me a few small, clarifying, questions about instructions in Office Hours.

- Submit your final work in Gradescope in the **Final Exam** entry.
- Please *show* all of your work and *justify* all of your answers.

1. [10 Points] Compute
$$\lim_{x \to \infty} \left[1 - \arcsin\left(\frac{3}{x^4}\right) - \sin\left(\frac{1}{x^4}\right) \right]^{x^4}$$

2. [20 Points] Compute each of the following integrals. Simplify.

(a) Show that
$$\int_{0}^{\sqrt{3}} \frac{1}{(1+x^2)^{\frac{7}{2}}} dx = \boxed{\frac{49\sqrt{3}}{160}}$$
 (b) $\int x^4 \arcsin x \, dx$
(c) Show that $\int_{0}^{\sqrt{3}} (x+3) \arctan x \, dx = \boxed{\left(\frac{2}{3}+\sqrt{3}\right)\pi - \frac{\sqrt{3}}{2} - \ln 8}$

3. [40 Points] For each of the following **Improper** integrals, determine whether it converges or diverges. If it converges, find its value. Simplify.

(a)
$$\int_{-\infty}^{-1} \frac{1}{x^2 - 6x + 25} dx$$
 (b) $\int_{-1}^{6} \frac{15 - x}{x^2 - 6x - 7} dx$ (c) $\int_{0}^{e} \frac{\ln x}{\sqrt{x}} dx$ (d) $\int_{0}^{\frac{1}{2}} \frac{1}{x \ln x} dx$

4. [28 Points] Determine whether the given series is **Absolutely Convergent**, **Conditionally Convergent**, or **Divergent**. Name any convergence test(s) you use, and justify all of your work.

(a)
$$\sum_{n=1}^{\infty} \cos^2\left(\frac{\pi n^6 + 2021}{6n^6 + 1}\right)$$
 (b) $\sum_{n=1}^{\infty} \frac{(-1)^n \cos^2\left(\pi n^6 + 2021\right)}{6n^6 + 1}$
(c) $\sum_{n=1}^{\infty} \frac{\ln(2021)}{n^6}$ (d) $\sum_{n=1}^{\infty} \frac{n^6}{\ln(n+2021)}$

5. [28 Points] Find the **sum** of each of the following series (which do converge). Simplify.

(a)
$$\frac{5}{3} - 1 + \frac{5}{7} - \frac{5}{9} + \frac{5}{11} - \dots$$
 (b) $\frac{1}{2} - \frac{1}{8} + \frac{1}{3 \cdot 2^3} - \frac{1}{64} + \frac{1}{5 \cdot 2^5} - \dots$ (c) $\sum_{n=0}^{\infty} \frac{(-3)^n - 2}{4^n}$

(d)
$$\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n+1}}{(\sqrt{2})^{4n} (2n)!}$$
 (e) $\sum_{n=0}^{\infty} \frac{(-1)^{n+1} (2^4) \pi^{2n}}{2^{4n} (2n)!}$

(f)
$$-\pi + \frac{\pi^3}{3!} - \frac{\pi^5}{5!} + \frac{\pi^7}{7!} - \frac{\pi^9}{9!} + \dots$$
 (g) $\sum_{n=0}^{\infty} \frac{(-1)^{n+1} (\ln 9)^n}{2^{n+1} n!}$

6. [21 Points] Find the Interval and Radius of Convergence for the following Power Series.

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n (n+1) (5x-2)^n}{n^2 8^n}$$
 (b) $\sum_{n=1}^{\infty} \frac{n^n (\ln n) (x-7)^n}{(2n)! e^n \sqrt{n}}$

7. [10 Points] Use MacLaurin Series to **Estimate** $\ln\left(\frac{3}{2}\right)$ with error less than $\frac{1}{50}$. Simplify.

8. [12 Points]

(a) Find the MacLaurin Series for $F(x) = \ln(x+3)$ and **State** the Radius of Convergence. Your answer should be in Sigma notation $\sum_{n=0}^{\infty}$ here, except for one term.

• Use the Fact that:
$$\ln(3+x) = \int \frac{1}{x+3} dx$$

(b) Use a **Different** Method from part (a) to find the MacLaurin Series for $F(x) = \ln(x+3)$.

• Use the Algebra Fact that: $\ln(x+3) = \ln\left[3\left(1+\frac{x}{3}\right)\right] = \ln 3 + \ln\left(1+\frac{x}{3}\right)$

**Check that your Answers in (a) and (b) match up. For your own fun, you can use the Definition of the MacLaurin Series (Chart Method) to confirm your answer.

9. [10 Points] Compute the Area bounded by the Polar Cuve $r = 2 - 2\sin\theta$. Sketch the curve.

10. [21 Points] For each of the following problems, do the following THREE things:

1. Sketch the Polar curve(s) and shade the described bounded region.

2. Set-Up but **DO NOT EVALUATE** an Integral representing the area of the described bounded region.

3. Set-Up but **DO NOT EVALUATE** another **slightly different** Integral representing the same area of the described bounded region.

(a) The **area** bounded outside the polar curve r = 1 and inside $r = 2\sin\theta$.

(b) The **area** that lies inside both of the curves $r = 2 + 2\sin\theta$ and $r = 2 - 2\sin\theta$.

(c) The **area** bounded outside the polar curve $r = 1 + \cos \theta$ and inside $r = 3 \cos \theta$.

(d) The **area** bounded inside the polar curve $r = 3 + 2\cos\theta$.

• You will need to use the Cartesian Plot to help you sketch this Limaçon Cardioid.

• No worries, just try this new polar curve. You will be graded on effort only here.

Have a Wondeful and Relaxing Summer!

Come visit me at my office next year for candy and chocolate!!