Math 121

Due Wednesday, May 26, in Gradescope by 11:59 pm ET

- This is an Open Notes Exam. You can use materials, homework problems, lecture notes, etc. that you manually worked on.
- There is NO Open Internet allowed. You can only access our Main Course Webpage.
- You are not allowed to work on or discuss these problems with anyone. You can only ask me a few small, clarifying, questions about instructions in Office Hours.
- Submit your final work in Gradescope in the Final Exam entry.
- Please show all of your work and justify all of your answers.

1. [10 Points] Compute $\lim _{x \rightarrow \infty}\left[1-\arcsin \left(\frac{3}{x^{4}}\right)-\sin \left(\frac{1}{x^{4}}\right)\right]^{x^{4}}$
2. [20 Points] Compute each of the following integrals. Simplify.

$$
\begin{array}{ll}
\text { (a) Show that } \int_{0}^{\sqrt{3}} \frac{1}{\left(1+x^{2}\right)^{\frac{7}{2}}} d x=\frac{49 \sqrt{3}}{160} & \text { (b) } \int x^{4} \arcsin x d x \\
\text { (c) Show that } \int_{0}^{\sqrt{3}}(x+3) \arctan x d x=\left(\frac{2}{3}+\sqrt{3}\right) \pi-\frac{\sqrt{3}}{2}-\ln 8
\end{array}
$$

3. [40 Points] For each of the following Improper integrals, determine whether it converges or diverges. If it converges, find its value. Simplify.
(a) $\int_{-\infty}^{-1} \frac{1}{x^{2}-6 x+25} d x$
(b) $\int_{-1}^{6} \frac{15-x}{x^{2}-6 x-7} d x$
(c) $\int_{0}^{e} \frac{\ln x}{\sqrt{x}} d x$
(d) $\int_{0}^{\frac{1}{2}} \frac{1}{x \ln x} d x$
4. [28 Points] Determine whether the given series is Absolutely Convergent, Conditionally Convergent, or Divergent. Name any convergence test(s) you use, and justify all of your work.
(a) $\sum_{n=1}^{\infty} \cos ^{2}\left(\frac{\pi n^{6}+2021}{6 n^{6}+1}\right)$
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n} \cos ^{2}\left(\pi n^{6}+2021\right)}{6 n^{6}+1}$
(c) $\sum_{n=1}^{\infty} \frac{\ln (2021)}{n^{6}}$
(d) $\sum_{n=1}^{\infty} \frac{n^{6}}{\ln (n+2021)}$
5. [28 Points] Find the sum of each of the following series (which do converge). Simplify.
(a) $\frac{5}{3}-1+\frac{5}{7}-\frac{5}{9}+\frac{5}{11}-\ldots$
(b) $\frac{1}{2}-\frac{1}{8}+\frac{1}{3 \cdot 2^{3}}-\frac{1}{64}+\frac{1}{5 \cdot 2^{5}}-\ldots$
(c) $\sum_{n=0}^{\infty} \frac{(-3)^{n}-2}{4^{n}}$
(d) $\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n+1}}{(\sqrt{2})^{4 n}(2 n)!}$
(e) $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}\left(2^{4}\right) \pi^{2 n}}{2^{4 n}(2 n)!}$
(f) $-\pi+\frac{\pi^{3}}{3!}-\frac{\pi^{5}}{5!}+\frac{\pi^{7}}{7!}-\frac{\pi^{9}}{9!}+\ldots$
(g) $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}(\ln 9)^{n}}{2^{n+1} n!}$
6. [21 Points] Find the Interval and Radius of Convergence for the following Power Series.
(a) $\sum_{n=1}^{\infty} \frac{(-1)^{n}(n+1)(5 x-2)^{n}}{n^{2} 8^{n}}$
(b) $\sum_{n=1}^{\infty} \frac{n^{n}(\ln n)(x-7)^{n}}{(2 n)!e^{n} \sqrt{n}}$
7. [10 Points] Use MacLaurin Series to Estimate $\ln \left(\frac{3}{2}\right)$ with error less than $\frac{1}{50}$. Simplify.
8. [12 Points]
(a) Find the MacLaurin Series for $F(x)=\ln (x+3)$ and State the Radius of Convergence. Your answer should be in Sigma notation $\sum_{n=0}^{\infty}$ here, except for one term.

- Use the Fact that: $\ln (3+x)=\int \frac{1}{x+3} d x$
(b) Use a Different Method from part (a) to find the MacLaurin Series for $F(x)=\ln (x+3)$.
- Use the Algebra Fact that: $\ln (x+3)=\ln \left[3\left(1+\frac{x}{3}\right)\right]=\ln 3+\ln \left(1+\frac{x}{3}\right)$
**Check that your Answers in (a) and (b) match up. For your own fun, you can use the Definition of the MacLaurin Series (Chart Method) to confirm your answer.

9. [10 Points] Compute the Area bounded by the Polar Cuve $r=2-2 \sin \theta$. Sketch the curve.
10. [21 Points] For each of the following problems, do the following THREE things:
11. Sketch the Polar curve(s) and shade the described bounded region.
12. Set-Up but DO NOT EVALUATE an Integral representing the area of the described bounded region.
13. Set-Up but DO NOT EVALUATE another slightly different Integral representing the same area of the described bounded region.
(a) The area bounded outside the polar curve $r=1$ and inside $r=2 \sin \theta$.
(b) The area that lies inside both of the curves $r=2+2 \sin \theta$ and $r=2-2 \sin \theta$.
(c) The area bounded outside the polar curve $r=1+\cos \theta$ and inside $r=3 \cos \theta$.
(d) The area bounded inside the polar curve $r=3+2 \cos \theta$.

- You will need to use the Cartesian Plot to help you sketch this Limaçon Cardioid.
- No worries, just try this new polar curve. You will be graded on effort only here.

> Have a Wondeful and Relaxing Summer!

Come visit me at my office next year for candy and chocolate!!

