
Inverse Trigonometric Functions Overview

In this handout, we will review two main Inverse Trigonometric Functions, Inverse Sine and
Inverse Tangent by studying their related

1. Function properties
2. Limits
3. Derivatives
4. Integrals

Inverse Sine:

Start by considering the graph for the sine function, y = sinx.

Recall, that a one-to-one or 1-1 function f(x) is one where different inputs map to unique,
distinct outputs. That is, if x1 ̸= x2 then f(x1) ̸= f(x2)

Notice that this function y = sinx is not a one-to-one function on its entire domain (−∞,∞).
We can justify that statement by showing that two distinct input values map to the same
output value. In particular, if we consider x = 0 and x = π, then they both map to the
same output value sin 0 = sinπ = 0.

We can also think about how the graph of y = sinx, drawn below in purple, does not pass
the Horizontal Line Test. Recall that the Horizontal Line Test would require that every
horizontal line cross the graph of the function in at most one point. We represent a sample

Horizontal Line in the following graph with a random Horizontal Line y =
1

2
, drawn in green.

Graph:

Figure 1: Sine Function y = sinx

Goal: To find an Inverse function for the sine function y = sinx, that is, find a reversing

function to solve an equation like sin x = −1

2
. . . and eventually to lead to some important,

new integrals.
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IMPORTANT: To study the inverse sine function, we will start by Restricting the Domain

of y = sinx to the interval
[
−π

2
,
π

2

]
where y = sinx will now be one-to-one.

We pick a largest, yet simplest restricted interval, including 0 (for nice symmetry and values),
so that the restricted function now passes the Horizontal Line Test.

Graph:

Figure 2: Sine Function y = sinx restricted to
[
−π

2
,
π

2

]
Definition: The Inverse Sine Function y = sin−1 x is defined as the unique Angle

(or Arc) y in the interval
[
−π

2
,
π

2

]
such that sin y = x for x in the interval [−1, 1].

sin−1 x = y means sin y = x

Think: Trigonometric functions will take in Angles for input and spit out Values. And
Inverse Trigonometric Functions will take in Values and spit out Angles.

x
arcsin−→←−
sin

y

Values
arcsin−→←−
sin

Angles

Notation: Inverse Sine can also be called Arcsine meaning

y = sin−1 x can be interchangably written as y = arcsinx .

Warning: be careful not to confuse the inverse notation with a reciprocal flip. That is,

y = sin−1 x ̸= 1

sinx
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Recall that the graph of Inverse Functions are mirror symmetrical flips across the line y = x.

Graph:

Figure 3: Symmetric Flips of y = sinx and y = arcsinx

Here is a clear graph showing only y = arcsinx.

Graph:

Figure 4: Inverse Sine Function y = arcsinx
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Let’s study some properties of this Inverse Sine Function y = arcsinx.

Domain= [−1, 1]

Recall, the Domain of a function is the collection of all possible input values which yield a
finite output or the values for which the function is defined. Here, arcsin x is only defined
for values in [−1, 1]

Range =
[
−π

2
,
π

2

]
Recall, the Range of a function is the collection of all possible output values for a given

function. Here arcsin x yields all output values in a restricted range =
[
−π

2
,
π

2

]
.

Note: As Inverse Functions it makes sense, from their graphs/definitions, that

Domain sinx (restricted) = Range arcsinx

Domain arcsinx = Range sin x (restricted)

Value(s):

arcsin 0 = 0 arcsin 1 =
π

2
arcsin(−1) = −π

2
arcsin

(
1

2

)
=

π

6
arcsin

(√
3

2

)
=

π

3

Question: Can you use symmetry to solve other values, like arcsin

(
−1

2

)
?

Tip: When we are computing an inverse sine value, try to think in reverse. For example,

think of arcsin
1

2
as What Angle do you know . . . such that . . . sine of THAT Angle equals

1

2

sin (what angle?)=
1

2
⇒ angle=

π

6
because sin

π

6
=

1

2
⇒ arcsin

1

2
=

π

6

Note: it is helpful to review Trig values in the forward direction, as it builds reverse fluency

Inverses:

sin(arcsinx) = x for x in [−1, 1]

arcsin(sinx) = x for x in
[
−π

2
,
π

2

]
Note: these inverse properties state that the sine and inverse sine invert each other, they
literally reverse or unwind the other function value. They don’t just “cancel”.

4



Limits: Study the Graph

Limit Tip

lim
x→1−

arcsinx =
π

2
as input values approach 1 from the left

the arcsinx output approaches
π

2

lim
x→−1+

arcsinx = −π

2
as input values approach −1 from the right

the arcsinx output approaches −π

2

Derivatives:

Derivative Tip

d

dx
arcsinx =

1√
1− x2

check the flip and the square root

. . . and the minus sign

d

dx
arcsin (u(x)) =

1√
1− (u(x))2

· u′(x) CHAIN RULE

flips with the root, leaving inside function as is. . .
times the derivative of the inside nested function

Recall: the Derivative Chain Rule can be written as

d

dx
(f(g(x))) = f ′(g(x))︸ ︷︷ ︸

deriv of outside
leave inside

· g′(x)︸︷︷︸
deriv of inside

Let us justify why the derivative of arcsin x equals
1√

1− x2
.

That is, Prove:
d

dx
arcsinx =

1√
1− x2

Let y = arcsinx

Invert sin y = x because sin y =��sin(����arcsinx) = x

Differentiate
d

dx
(sin y) =

d

dx
(x) yielding cos y

dy

dx
= 1

Finally, solve
dy

dx
=

1

cos y
=

1√
1− sin2 y

=
1√

1− (sin y)2
=

1√
1− x2
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Note: the identity cos2 y + sin2 y = 1 yields cos y = ±
√
1− sin2 y but we use the positive

root in our restricted domain
[
−π

2
,
π

2

]
.

For the Chain Rule, note that the order of composed functions matters. The following are
not the same.

Example:
d

dx
arcsin (ex) =

1√
1− (ex)2

· ex =
ex√

1− e2x

Example:
d

dx
earcsinx = earcsinx · 1√

1− x2

Here again, the following are not the same.

Example:
d

dx
(arcsinx)3 = 3 (arcsin x)2 · 1√

1− x2

Example:
d

dx
arcsin

(
x3
)
=

1√
1− (x3)2

· (3x2) =
3x2

√
1− x6

Integrals: We now have the function which is the Antiderivative of
1√

1− x2

Integral Tip∫
1√

1− x2
dx = arcsinx+ C antiderivative of

1√
1− x2

is the Inverse Sine

Compare:

∫
x√

1− x2
dx uses u-sub, whereas the new integral

∫
1√

1− x2
dx does not.

Helpful WARNING/INCORRECT : Be careful not to split the square root in the
denominator or split the denominator∫

1√
1− x2

dx ̸=
∫

1

1− x
dx ̸=

∫
1

1
− 1

x
dx . . .

Note: be careful not to punch every integral with a denominator with the logarithm. That
is, be careful to only use the log antiderivative rule for 1 over x to the exact power 1.

Helpful WARNING/INCORRECT :

∫
1√

1− x2
dx ̸= ln

√
1− x2 + C

Instead, using the correct (now) Snap Fact

∫
1√

1− x2
dx = arcsinx+ C Memorize!
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INDEFINITE Integrals with u-substitution: Always remember to add +C right away,
as soon as you compute the Most General Antiderivative. The original variable always
reappears when we re-substitute back for u.

Recall: u-substitution is a temporary convenience that hides a nested, meaty chunk of your
integrand to first simplify the integral, and second, to match the derivative chunk, all with
the overall goal of reversing the Chain Rule.

IMPORTANT: Keep a look out for opportunities by creating Hidden Squares

Example:∫
x2

√
1− x6

dx =

∫
x2√

1−
(
x3
)2 dx =

1

3

∫
1√

1− u2
du

=
1

3
arcsinu+ C =

1

3
arcsin

(
x3
)
+ C

u = x3

du = 3x2 dx
1
3
du = x2dx

Recall Algebra Rule: (xa)b = xab

Think: why does the u-sub u = 1− x6 not work from the start?

Example:∫
e2x√
1− e4x

dx =

∫
e2x√

1−
(
e2x
)2 dx =

1

2

∫
1√

1− u2
du

=
1

2
arcsinu+ C =

1

2
arcsin

(
e2x
)
+ C

u = e2x

du = 2e2x dx
1
2
du = e2xdx

Think: why does the u-sub u = 1− e4x not work from the start?

Note: Many different integrals lead to the same u-sub integral leading to arcsin.
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Inverse Tangent:

Start by considering the graph for the tangent function, y = tanx.

Notice that this function y = tanx is not a one-to-one function on its entire domain. We
can justify that statement by showing that two distinct input values map to the same output
value. In particular, if we consider x = 0 and x = π, then they both map to the same output
value tan 0 = tanπ = 0.

We can also think about how the graph of y = tanx, drawn in purple, does not pass the
Horizontal Line Test. We represent a sample Horizontal Line in the following graph with a
random Horizontal Line y = 3, drawn in green.

Graph:

Figure 5: Tangent Function y = tanx

Goal: To find an Inverse function for the tangent function y = tanx, that is, find a reversing
function to solve an equation like tanx = −1 . . . and eventually to lead to some important,
new integrals.

IMPORTANT: To study the inverse tangent function, we will start by Restricting the

Domain of y = tanx to the interval
(
−π

2
,
π

2

)
where y = tanx will now be one-to-one.

We pick a largest, yet simplest restricted interval, including 0 (for nice symmetry and values),
so that the restricted function passes the Horizontal Line Test.
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Graph:

Figure 6: Tangent Function y = tanx restricted to
(
−π

2
,
π

2

)
Definition: The Inverse Tangent Function y = tan−1 x is defined as the unique An-

gle (or Arc) y in the interval
(
−π

2
,
π

2

)
such that tan y = x for x in the interval (−∞,∞).

tan−1 x = y means tan y = x

Similar to before

x
arctan−→←−
tan

y

Values
arctan−→←−
tan

Angles

Notation: Inverse Tangent can also be called Arctangent.

y = tan−1 x can be interchangably written as y = arctanx .

Warning: be careful not to confuse the inverse notation with a reciprocal flip. That is,

y = tan−1 x ̸= 1

tanx
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Recall that the graph of Inverse Functions are mirror symmetrical flips across the line y = x.

Graph:

Figure 7: Symmetric Flips of y = tanx and y = arctanx

Here is a clear graph showing only y = arctanx.

Graph:

Figure 8: Inverse Tangent Function y = arctanx

Let’s study some properties of this Inverse Tangent Function y = arctanx.

Domain= (−∞,∞)

Here, arctanx is defined for all Real numbers, which is different than arcsin x.

Range =
(
−π

2
,
π

2

)
Here arctan x yields all output values in a restricted range =

(
−π

2
,
π

2

)
, again different than

arcsinx.
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Note: As Inverse Functions it makes sense, from their graphs/definitions, that

Domain tanx (restricted) = Range arctanx

Domain arctanx = Range tanx (restricted)

Value(s):

arctan 0 = 0 arctan 1 =
π

4
arctan(

√
3) =

π

3
arctan

(
1√
3

)
=

π

6

Question: Can you use symmetry to solve other values, like arctan (−1)?

Tip: When computing an inverse tangent value, try to think in reverse. Think of arctan
1√
3

as What Angle do you know . . . such that . . . tangent of THAT Angle equals
1√
3

tan (what angle?)=
1√
3

⇒ angle=
π

6
because tan

π

6
=

1√
3

⇒ arctan
1√
3
=

π

6

Inverses:

tan(arctanx) = x for x in (−∞,∞)

arctan(tanx) = x for x in
(
−π

2
,
π

2

)
Note: these inverse properties state that the tangent and inverse tangent invert each other,
they literally reverse or unwind the other function value. They don’t just “cancel”.

Limits: Study the Graph −→ there are two nice Horizontal Asymptotes y = ±π

2

Limit Tip

lim
x→∞

arctanx =
π

2
as input values grow uncontrollably large, the output grows to

π

2

lim
x→−∞

arctanx = −π

2
as input values grow uncontrollably large negative

the output approaches −π

2

These Limits will be very useful in future integrals.
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Derivatives:

Derivative Tip

d

dx
arctanx =

1

1 + x2
check the flip and plus sign

d

dx
arctan (u(x)) =

1

1 + (u(x))2
· u′(x) CHAIN RULE

flips, leaving inside function as is. . .
times the derivative of the inside nested function

Let us justify why the derivative of arctan x equals
1

1 + x2
.

That is, Prove:
d

dx
arctanx =

1

1 + x2

Let y = arctanx

Invert tan y = x because tan y =��tan(����arctanx) = x

Differentiate
d

dx
(tan y) =

d

dx
(x) yielding sec2 y

dy

dx
= 1

Finally, Solve
dy

dx
=

1

sec2 y
=

1

1 + tan2 y
=

1

1 + (tan y)2
=

1

1 + x2

Note: the identity 1 + tan2 y = sec2 y.

For the Chain Rule, note that the order of composed functions matters. The following are
not the same.

Example:
d

dx
arctan

(√
x
)
=

1

1 + (
√
x)

2 · 1

2
√
x
=

1

2
√
x(1 + x)

Example:
d

dx

√
arctanx =

1

2
√
arctanx

· 1

1 + x2

Integrals: We now have the function which is the Antiderivative of
1

1 + x2

Integral Tip∫
1

1 + x2
dx = arctanx+ C antiderivative of

1

1 + x2
is the Inverse Tangent

Compare:

∫
x

1 + x2
dx uses u-sub, whereas the new integral

∫
1

1 + x2
dx does not.
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Helpful WARNING/INCORRECT : Be careful not to split the denominator∫
1

1 + x2
dx ̸=

∫
1

1
+

1

x2
dx . . .

Note: be careful not to punch every integral with a denominator with the logarithm. That
is, be careful to only use the log antiderivative rule for 1 over x to the exact power 1.

Helpful WARNING/INCORRECT :

∫
1

1 + x2
dx ̸= ln

(
1 + x2

)
+ C

Instead, using the correct (now) Snap Fact

∫
1

1 + x2
dx = arctanx+ C Memorize!

INDEFINITE Integrals with u-substitution:

IMPORTANT: Keep a look for opportunities by creating Hidden Squares

Example:∫
x3

1 + x8
dx =

∫
x3

1 +
(
x4
)2 dx =

1

4

∫
1

1 + u2
du

=
1

4
arctanu+ C =

1

4
arctan

(
x4
)
+ C

u = x4

du = 4x3 dx
1
4
du = x3dx

Think: why does the u-sub u = 1 + x8 not work from the start?

Example:∫
e3x

1 + e6x
dx =

∫
e3x

1 +
(
e3x
)2 dx =

1

3

∫
1

1 + u2
du

=
1

3
arctanu+ C =

1

3
arctan

(
e3x
)
+ C

u = e3x

du = 3e3x dx
1
3
du = e3xdx

Think: why does the u-sub u = 1 + e6x not work from the start?

Note: Many different integrals lead to the same u-sub integral leading to arctan.
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“a-Rules” for Inverse Trig : Note, some special integrals can be generalized to a Snap-
Fact, which we will refer to as the “a-Rules”, so we can avoid justifying the u-substitution
and algebra each time

Integral Tip∫
1

a2 + x2
dx =

1

a
arctan

(x
a

)
+ C coefficient included for arctan, constant a > 0

∫
1√

a2 − x2
dx = arcsin

(x
a

)
+ C no coefficient included for arcsin, constant a > 0

Here are some examples using the a-Rules as Snap-Facts.

Example:

∫
1

9 + x2
dx =

1

3
arctan

(x
3

)
+ C

Example:

∫
1√

25− x2
dx = arcsin

(x
5

)
+ C

See Class notes/handouts for sample proofs of the a-Rules

DEFINITE Integral using u-substitution and a-Rule:

Example:∫ e3

e

1

x (3 + (ln x)2)
dx =

∫ 3

1

1

3 + u2
du

a-rule
=

1√
3
arctan

(
u√
3

) ∣∣∣∣3
1

=
1√
3

(
arctan

(
3√
3

)
− arctan

(
1√
3

))

=
1√
3

(
arctan

√
3− arctan

(
1√
3

))

=
1√
3

(π
3
− π

6

)
=

π

6
√
3

u = lnx

du =
1

x
dx

and
x = e ⇒ u = ln e = 1

x = e3 ⇒ u = ln e3 = 3
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