Inverse Trigonometric Functions Overview

In this handout, we will review two main Inverse Trigonometric Functions, Inverse Sine and
Inverse Tangent by studying their related

1. Function properties
2. Limits

3. Derivatives

4. Integrals

Inverse Sine:

Start by considering the graph for the sine function, y = sin x.

Recall, that a one-to-one or 1-1 function f(z) is one where different inputs map to unique,
distinct outputs. That is, if 1 # x9 then f(x1) # f(z2)

Notice that this function y = sin z is not a one-to-one function on its entire domain (—o00, 00).
We can justify that statement by showing that two distinct input values map to the same
output value. In particular, if we consider x = 0 and x = =, then they both map to the
same output value sin(0 = sinm = 0.

We can also think about how the graph of y = sinz, drawn below in purple, does not pass
the Horizontal Line Test. Recall that the Horizontal Line Test would require that every
horizontal line cross the graph of the function in at most one point. We represent a sample

Horizontal Line in the following graph with a random Horizontal Line y = 2 drawn in green.
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Figure 1: Sine Function y = sinx

Goal: To find an Inverse function for the sine function y = sinx, that is, find a reversing

1
function to solve an equation like sin x = 5 and eventually to lead to some important,

new integrals.



IMPORTANT: To study the inverse sine function, we will start by Restricting the Domain

T
of y = sinx to the interval [—5, 5] where y = sinx will now be one-to-one.

We pick a largest, yet simplest restricted interval, including 0 (for nice symmetry and values),
so that the restricted function now passes the Horizontal Line Test.
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Figure 2: Sine Function y = sin x restricted to [—g, a

Definition: The Inverse Sine Function y = sin~'z is defined as the unique Angle

(or Arc) y in the interval [—g, g} such that siny = z for x in the interval [—1, 1].

sin'z =1y means siny==x

Think: Trigonometric functions will take in Angles for input and spit out Values. And
Inverse Trigonometric Functions will take in Values and spit out Angles.

arcsin
Values =— Angles

sin
Notation: Inverse Sine can also be called Arcsine meaning

1

y =sin” " x can be interchangably written as y = arcsinx .

Warning: be careful not to confuse the inverse notation with a reciprocal flip. That is,

) 1
y=sin"tz # —
sin




Recall that the graph of Inverse Functions are mirror symmetrical flips across the line y = x.
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Figure 3: Symmetric Flips of y = sinz and y = arcsinz
Here is a clear graph showing only y = arcsin x.
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Figure 4: Inverse Sine Function y = arcsinz



Let’s study some properties of this Inverse Sine Function y = arcsin z.
Domain= [—1, 1]

Recall, the Domain of a function is the collection of all possible input values which yield a
finite output or the values for which the function is defined. Here, arcsinz is only defined
for values in [—1, 1]

T

Range = [——, —}

8 272
Recall, the Range of a function is the collection of all possible output values for a given
function. Here arcsin x yields all output values in a restricted range = [—g, %]

Note: As Inverse Functions it makes sense, from their graphs/definitions, that

Domain sinx (restricted) = Range arcsinx
Domain arcsin x = Range sinz (restricted)
Value(s):

1 3
arcsin() = 0 | arcsin1 = g arcsin(—1) = —g arcsin (5) = 2 | arcsin (%) =z

1
Question: Can you use symmetry to solve other values, like arcsin (—5) ?

Tip: When we are computing an inverse sine value, try to think in reverse. For example,

1 1
think of arcsin 3 as What Angle do you know . .. such that ... sine of THAT Angle equals 5

N | T b T 1 N o1 T
angle= — ecause sin — = — arcsin — = —
8% 6 2 276

N | —

sin (what angle?)=
Note: it is helpful to review Trig values in the forward direction, as it builds reverse fluency

Inverses:

sin(arcsinz) = 2 for x in [—1,1]

. ) T
arcsin(sinz) =z for z in [—5, E}

Note: these inverse properties state that the sine and inverse sine invert each other, they
literally reverse or unwind the other function value. They don’t just “cancel”.



Limits: Study the Graph

Limit

Tip

. . ™
lim arcsinxz = —
r—1— 2

as input values approach 1 from the left

: T
the arcsin z output approaches 5

7
lim+ arcsin x = —5 as input values approach —1 from the right
rz——1 . -
the arcsin x output approaches —5
Derivatives:
Derivative Tip
d ) 1 .
— arcsinx = check the flip and the square root

dx V1—a22

...and the minus sign

-u/(z) | CHAIN RULE

Recall: the Derivative Chain Rule can be written as

Let us justify why the derivative of arcsin x equals

deriv of outside deriv of inside
leave inside

1

1— a2

That is, Prove: T arcsinx =

T

1
V1—a?

Let y = arcsinx

Invert siny =z  because siny = siri(aresinz) = z

d d d
Differentiate ar (siny) = dr (z) yielding cosy % =1

1

1 1 1

Finally, solve d_y =

flips with the root, leaving inside function as is. ..
times the derivative of the inside nested function

dvoocosy Vlosinty 1o (sing? VIS

5



Note: the identity cos®y + sin’y = 1 yields cosy = £+/1 —sin’y but we use the positive
T
root in our restricted domain [_5’ 5

For the Chain Rule, note that the order of composed functions matters. The following are
not the same.

Example: — arcsin (¢¥) = ———— - " =
ple: — (e”)

arcsin x arcsin x

d 1
Example: —e =e

dz V1 — 22
Here again, the following are not the same.

1
V1—a?

d
Example: — (arcsinz)® = 3 (arcsin z)” -

dx

d 1 3x”
Example: e arcsin (2°) = ———- (32%) = -
T

1 — (a3)? VI—af

Integrals: We now have the function which is the Antiderivative of

1—22
Integral ‘ Tip
/ ! d inx 4+ C tiderivati f ! is the I Si
——— dx = arcsinx antiderivative of ——— is the Inverse Sine
V1—2a2? V1—2a?

Compare: dx uses u-sub, whereas the new integral dx does not.

T 1
/\/1—x2 /1/1—x2
Helpful WARNING/INCORRECT : Be careful not to split the square root in the

denominator or split the denominator

/ﬁdw#/ﬁdw#/%—idm...

Note: be careful not to punch every integral with a denominator with the logarithm. That
is, be careful to only use the log antiderivative rule for 1 over x to the exact power 1.

Helpful WARNING/INCORRECT : de# Inv1—a22+C

=

Instead, using the correct (now) Snap Fact xr = arcsinz +C  Memorize!

[



INDEFINITE Integrals with u-substitution: Always remember to add +C right away,
as soon as you compute the Most General Antiderivative. The original variable always
reappears when we re-substitute back for u.
Recall: u-substitution is a temporary convenience that hides a nested, meaty chunk of your
integrand to first simplify the integral, and second, to match the derivative chunk, all with
the overall goal of reversing the Chain Rule.

IMPORTANT: Keep a look out for opportunities by creating Hidden Squares

Example:

1
= 5 arcsinu + C = 3 aresin (x3) +C

u =z

du =3z>dr | Recall Algebra Rule: (2%)" = 2%
sdu = 2?dx

Think: why does the u-sub u = 1 — 2°® not work from the start?

Example:

1
= 5 arcsinu + C' = | = arcsin (623”) +C

2
u =e*
du = 2e** dx
%du = e®dx

Think: why does the u-sub u = 1 — €% not work from the start?

Note: Many different integrals lead to the same wu-sub integral leading to arcsin.



Inverse Tangent:

Start by considering the graph for the tangent function, y = tan x.

Notice that this function y = tanz is not a one-to-one function on its entire domain. We
can justify that statement by showing that two distinct input values map to the same output
value. In particular, if we consider x = 0 and x = 7, then they both map to the same output
value tan 0 = tan7 = 0.

We can also think about how the graph of y = tanx, drawn in purple, does not pass the
Horizontal Line Test. We represent a sample Horizontal Line in the following graph with a

random Horizontal Line y = 3, drawn in green.
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Figure 5: Tangent Function y = tanx

Goal: To find an Inverse function for the tangent function y = tan z, that is, find a reversing
function to solve an equation like tanz = —1 ...and eventually to lead to some important,
new integrals.

IMPORTANT: To study the inverse tangent function, we will start by Restricting the

T
Domain of y = tanx to the interval (—5, 5) where y = tan x will now be one-to-one.

We pick a largest, yet simplest restricted interval, including 0 (for nice symmetry and values),
so that the restricted function passes the Horizontal Line Test.



Graph:

y=tanx

Figure 6: Tangent Function y = tan x restricted to (—g, g)

Definition: The Inverse Tangent Function y = tan~!z is defined as the unique An-

gle (or Arc) y in the interval (—g, g) such that tany = x for x in the interval (—oo, 00).

tan"'z =y means tany=2x

Similar to before
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Notation: Inverse Tangent can also be called Arctangent.

1

y = tan~" x can be interchangably written as y = arctan x .
Warning: be careful not to confuse the inverse notation with a reciprocal flip. That is,
1
y=tan 'z #
tanx



Recall that the graph of Inverse Functions are mirror symmetrical flips across the line y = x.

Graph:

y=tanx
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Figure 7: Symmetric Flips of y = tanx and y = arctanx
Here is a clear graph showing only y = arctan z.

Graph:
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Figure 8: Inverse Tangent Function y = arctan x

Let’s study some properties of this Inverse Tangent Function y = arctan x.
Domain= (—o0, 00)

Here, arctan z is defined for all Real numbers, which is different than arcsin x.

T
R - (__7_>
ange 579

T
Here arctan x yields all output values in a restricted range = (—5, 5), again different than

arcsin z.

10



Note: As Inverse Functions it makes sense, from their graphs/definitions, that

Domain tan x (restricted) = Range arctanx
Domain arctan = Range tanx (restricted)
Value(s):

1
arctan(0 = 0 | arctan 1 = % arctan(v/3) = g arctan (ﬁ) = g

Question: Can you use symmetry to solve other values, like arctan (—1)7

1
Tip: When computing an inverse tangent value, try to think in reverse. Think of arctan —

V3

1
as What Angle do you know ... such that ... tangent of THAT Angle equals —

V3

1 1 1
tan (what angle?)= ﬁ = angle= % because tan% = — = arctan— =

V3 V3 6

Inverses:

tan(arctanx) =z for x in (—o0, 00)

) T
arctan(tanx) =z for x in (_57 5)

Note: these inverse properties state that the tangent and inverse tangent invert each other,
they literally reverse or unwind the other function value. They don’t just “cancel”.

Limits: Study the Graph — there are two nice Horizontal Asymptotes y = +7

2

Limit Tip

. m . ™
lim arctanx = 5 as input values grow uncontrollably large, the output grows to 5
T—00

. ™ . .

lim arctanz = —5 as input values grow uncontrollably large negative
T——00 T

the output approaches —3

These Limits will be very useful in future integrals.

11




Derivatives:

Derivative Tip
t ! heck the fli d pl i
— arctanz = chec e flip an us sign
dx 1+ 22 P P &
d tan (u(z)) 1 '(z) | CHAIN RULE
— arctan (u(z)) = —— U/ (zx
dx 1+ (u(x))?
flips, leaving inside function as is. ..
times the derivative of the inside nested function

Let us justify why the derivative of arctan z equals

+ 22

That is, Prove: |— arctanx =
dx 1+ 22

Let y = arctanz

Invert tany = x because tany = taf(aretanr) =z

Differentiate j_x (tany) = j_x (x) yielding sec?y j—i =1

_ dy 1 1 1 1
Finally, Solve —= = = — = s =
dr sec?y 1+tan*y 1+ (tany) 1+ 22

Note: the identity 1 + tan?y = sec?y.

For the Chain Rule, note that the order of composed functions matters. The following are
not the same.

d 1 1 1
E l e t = . =
xample: —— arctan (V) T er 3E oAl

d 1 1
Example: —+arctanx = .
T 2v/arctanz 1+ 2?

Integrals: We now have the function which is the Antiderivative of 5
x

Integral ‘ Tip

1 1
/ dr = arctanx + C' | antiderivative of is the Inverse Tangent
14 22 1+ 22

1
Compare: / * dx uses u-sub, whereas the new integral / —— dx does not.
1+ a2 1+ a2

12



Helpful WARNING/INCORRECT : Be careful not to split the denominator

1 11
d 4 dp...
/1+x2 x7é/1+a:2 .

Note: be careful not to punch every integral with a denominator with the logarithm. That
is, be careful to only use the log antiderivative rule for 1 over x to the exact power 1.

1
Helpful WARNING /INCORRECT : / T de# In(1+2%) +C
x
Instead, using the correct (now) Snap Fact / 52 dr = arctanx + C' Memorize!
x

INDEFINITE Integrals with u-substitution:
IMPORTANT: Keep a look for opportunities by creating Hidden Squares

Example:

3 3 11
[t =~ e
+x 1—|—<£If4) +u

1 1
= 1 arctanu + C = 1 arctan (m4) +C

u =z
du =423 dor | Think: why does the u-sub u = 1 + % not work from the start?
%du = 23dx

Example:

3z 3x 1 1
/166xdx :/G—de:§/1 2du
+e 1—|—<63x) +u

1 1
= 3 arctanu + C = 3 arctan (63””) +C

u =e

du = 3¢ dx | Think: why does the u-sub u = 1 + €% not work from the start?
%du = 3%y

Note: Many different integrals lead to the same u-sub integral leading to arctan.
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“a-Rules” for Inverse Trig: Note, some special integrals can be generalized to a Snap-
Fact, which we will refer to as the “a-Rules”, so we can avoid justifying the u-substitution
and algebra each time

Integral Tip

1 1 T
———— dr = — arctan (—) + C' | coefficient included for arctan, constant a > 0
a? + 22 a a

x
dx = arcsin (—) +C no coefficient included for arcsin, constant a > 0
a

| =

Here are some examples using the a-Rules as Snap-Facts.

1 1
Example: / 9122 dr = 3 arctan (3) +C

1
Example: [ — dz = arcsin ( ) +C
P / V25 — x? 5
See Class notes/handouts for sample proofs of the a-Rules

DEFINITE Integral using u-substitution and a-Rule:

Example:

/ ) 1 d / P 1 dy e a cta Y
———dx = ——— du = ——=arctan| —
e (34 (Inz)?) 34 u? V3
(arctan < ) — arctan (L>>
V3
arctan \/_ — arctan ( ))

%I

U lnx 33:6:>U:1n€:1
1 and
du :Edz r=e=u=1Ine’=3
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