Worksheet 3, Thursday, September 20, 2012

1. Compute the following limits. Be clear if they equal a value, or $+\infty$, $-\infty$, or DNE.

(a)
$$\lim_{x \to 2} \frac{x^2 - 9x + 14}{x^2 - 4x + 4}$$

(b)
$$\lim_{x \to 2} \frac{3 - \sqrt{x+1}}{x - 8}$$

(c)
$$\lim_{x \to 8} \frac{3 - \sqrt{x+1}}{x - 8}$$

(d)
$$\lim_{x \to 2} \frac{x^2 - 6 + |x - 4|}{3x - 6}$$

(e)
$$\lim_{x \to 2} \frac{x - 2}{|2 - x|}$$

- 2. Write out the rigorous $\epsilon \delta$ Definition of the Limit $\lim_{x \to a} f(x) = L$.
- 3. Give an ε - δ proof that $\lim_{x \to 1} 10 7x = 3$.
- 4. Give an ε - δ proof that $\lim_{x \to 6} 4 \frac{3x}{2} = -5$.
- 5. Let f(x) be a function with the property $\lim_{x\to 2} f(x) = 5$.
 - (a) Discuss what you can conclude about your function f(x).
 - (b) Discuss what you know about f(2). Explain your reasoning.
- 6. Consider the function f(x) that is continuous at x = 3. Assume that f(3) = 4.
 - (a) Write the definition for f(x) being continuous at x = 3.
 - (b) Discuss what you know about $\lim_{x\to 3} f(x) = ??$.

7. Let
$$h(x) = \begin{cases} \frac{8}{x+2} & \text{if } x < 0\\ 2 & \text{if } x = 0\\ \frac{1}{2}x - 4 & \text{if } 0 < x < 16\\ 0 & \text{if } x = 16\\ \sqrt{x} & \text{if } x > 16 \end{cases}$$

Answer the following questions:

- (a) Sketch the graph of h(x). State the Domain of h(x).
- (b) Compute $\lim_{x \to 16} h(x)$.
- (c) Compute $\lim_{x \to 0} h(x)$.
- (d) Compute $\lim_{x \to -2} h(x)$.
- (e) State the x-values at which h(x) is discontinuous. Justify your statements.

8. Write out the Limit Definition of the Derivative f'(x).

- 9. For each of the following functions, find f'(x) using the limit definition of the derivative.
 - (a) $f(x) = x^4$
 - (b) $f(x) = \sqrt{x}$
 - (c) $f(x) = \frac{1}{x}$
 - (d) $f(x) = \frac{x+1}{x-1}$
 - (e) $f(x) = \frac{1}{\sqrt{x}}$

Turn in solutions for your group.