${\bf Amherst~College} \\ {\bf DEPARTMENT~OF~MATHEMATICS} \\$

Math 111

Midterm Exam #3

November 30, 2012

- This is a closed-book examination. No books, notes, calculators, cell phones, communication devices of any sort, or webpages, or other aids are permitted.
- You need *not* simplify algebraically complicated answers for the derivative section. However, numerical answers such as $\sin\left(\frac{\pi}{6}\right)$, $4^{\frac{3}{2}}$, e^0 should be simplified.
- \bullet Please *show* all of your work and *justify* all of your answers. (You may use the backs of pages for additional work space.)

Problem	Score	Possible Points
1		20
1		20
2		25
3		10
4		15
_		
5		20
6		10
Total		100

1. [20 Points] Differentiate each of the following functions. You do not need to simplify your answers.

(a)
$$f(x) = \int_{\sec x}^{7} \sqrt{\cos t + 7e^t} dt$$

(b)
$$f(x) = \tan(e^x + \sqrt{x}) + e^{\tan\sqrt{x}} + \sqrt{e^x + \tan x}$$

(c)
$$f(x) = e^x + x^e + ex + e^e + e^{(e^x)} + (x^e)^e + e^{\frac{1}{x}} - \frac{1}{e^x}$$
.

 $\mathbf{2.}$ [25 Points] Compute each of the following integrals. Simplify your answers.

(a)
$$\int \left(e^{7x} + \frac{1}{e^{4x}}\right)^2 dx$$

(b)
$$\int_0^1 \frac{e^x}{\sqrt{e^x + 8}} \, dx$$

 ${f 2.}$ [Continued] Compute each of the following integrals. Simplify your answers.

(c)
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\cos x}{\sin^3 x} \, dx$$

(d) $\int x (x-1)^{\frac{5}{7}} dx$

3. [10 Points] Find the function f(x) that satisfies $f'(x) = \frac{e^{\sqrt{\tan x}} \sec^2 x}{\sqrt{\tan x}}$ and $f\left(\frac{\pi}{4}\right) = 1$.

4. [15 Points] You need to construct a box with a square base with a fixed volume of 24 cubic feet. The material for the bottom and top costs \$3 per square foot, and the material for the sides costs \$1 per square foot. What are the **dimensions** that minimize the cost required to build such a box? What is that **minimum cost**?

(Don't forget to state the common sense bounds, that is, the domain of the function that you are maximizing or minimizing.)

- **5.** [20 Points] Compute $\int_1^3 x^2 3x \ dx$ using each of the following **two** different methods:
- (a) Fundamental Theorem of Calculus.
- (b) Riemann Sums and the limit definition of the definite integral ***.

*** Recall
$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$
, $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$, and $\sum_{i=1}^{n} 1 = n$

6. [10 Points] A moving object has velocity v(t) = 2t - 6 feet per second, at time t seconds. Compute the **Total Distance** travelled by this object from time t = 0 to t = 4 seconds.

OPTIONAL BONUS

Do not attempt these unless you are completely done with the rest of the exam.

OPTIONAL BONUS #1 Compute
$$\lim_{n \to \infty} \frac{e^{(1+\frac{1}{n})} + e^{(1+\frac{2}{n})} + e^{(1+\frac{3}{n})} + \dots + e^2}{n}$$

OPTIONAL BONUS #2 Compute
$$\int \sin^3 x \ dx$$