Math 111 Midterm Exam #1 February 17, 2012 Compact Version

• This is a closed-book examination. No books, notes, calculators, cell phones, communication devices of any sort, or webpages, or other aids are permitted.

• Please *show* all of your work and *justify* all of your answers. (You may use the backs of pages for additional work space.)

1. [30 Points] Evaluate each of the following limits. Please **justify** your answers. Be clear if the limit equals a value, $+\infty$ or $-\infty$, or Does Not Exist.

(a)
$$\lim_{x \to -7} \frac{x^2 + 5x - 14}{x^2 - 4x + 4} =$$
 (b) $\lim_{x \to 4} \frac{x^2 - 9x + 20}{|4 - x|} =$

(c)
$$\lim_{x \to -6} \frac{f(x^2) + 5x - 8}{[f(x)]^2 + 5x + 14} =$$
 where $f(x) = x + 2$ (d) $\lim_{x \to 2} \frac{x^2 + 5x - 14}{x^2 - 4x + 4} =$

- (e) $\lim_{x \to 8} \frac{3 \sqrt{x+1}}{x^2 7x 8} =$
- **2.** [13 Points] Prove that $\lim_{x \to 5} 7 2x = -3$ using the $\varepsilon \delta$ definition of the limit.

3. [15 Points] Suppose that $f(x) = \frac{x+7}{x-3}$. Compute f'(x) using the limit definition of the derivative.

4. [10 Points] Suppose that $f(x) = 5 - 7x + 4x^2 - x^3$. Write the **equation of the tangent line** to the curve y = f(x) when x = 1. **Use the limit definition of the derivative when computing the derivative.**

5. [6 Points] Suppose that f and g are functions, and

•
$$\lim_{x \to 3} f(x) = 9$$

• $\lim_{x \to 7} g(x) = -6$
• $\lim_{x \to 4} f(x) = 7$
• $g(x)$ is continuous at $x = 7$.
• $f(x)$ is continuous at $x = 4$.

(a) Compute $g \circ f(4) =$ (Do **not** just put down a value. Justify your answer.)

(b) Does f(3) = 9? Why or why not?

6. [6 Points] Suppose that f(x) = √x + 4 and g(x) = x + 2.
(a) Compute and graph f ∘ q(x).
(b) Compute and graph q ∘ f(x).

7. [20 Points] Consider the function defined by

$$f(x) = \begin{cases} \sqrt{x-7} & \text{if } x > 7\\ 1 & \text{if } x = 7\\ 7-x & \text{if } 0 < x < 7\\ 16-x^2 & \text{if } -4 < x \le 0\\ \frac{1}{x+4} & \text{if } x < -4 \end{cases}$$

- (a) Carefully sketch the graph of f(x).
- (b) State the **Domain** of the function f(x).

(f) State the value(s) at which f is discontinuous. Justify your answer(s) using definitions or theorems discussed in class.

OPTIONAL BONUS

Do not attempt these unless you are completely done with the rest of the exam.

OPTIONAL BONUS #1 Compute
$$\lim_{x \to 2} \frac{(4 - \sqrt{x + 14})(\sqrt{13 - x^2} - 3)}{(6 - \sqrt{40 - 2x})(\sqrt{x^2 + 21} - 5)} =$$

OPTIONAL BONUS #2 Let $f(x) = \sqrt{\frac{x^2 + 1}{7 - x^3}}$. Compute $f'(x)$.
OPTIONAL BONUS #3 Compute $\lim_{x \to 0} \frac{|x - 1| - |x + 1| - |x|}{|x| + |2 - x| - |x + 2|} =$