Math 111, Section 01, Fall 2014

Worksheet 11, Tuesday, December 9, 2014

1. Evaluate each of the following limits. Please justify your answers. Be clear if the limit equals a value, $+\infty$, or $-\infty$, or Does Not Exist.

(a)
$$\lim_{x \to 5} \frac{5-x}{\sqrt{x+4}-3}$$

(b) $\lim_{x \to 2} \frac{g(x^2)+x-3}{[g(x+1)]^2-x+2}$ where $g(x) = x-3$.
(c) $\lim_{x \to 1} \frac{x^2-8x+7}{x^2-2x+1}$
(d) $\lim_{x \to 5} \frac{x^2-4x-5}{|5-x|}$

- 2. Prove that $\lim_{x\to 3} 5 2x = -1$ using the $\varepsilon \delta$ definition of the limit.
- 3. Let $f(x) = \frac{3-x}{x+7}$. Compute the derivative in two different ways:
 - (a) using the Limit Definition of the derivative
 - (b) using the Quotient Rule.
- 4. Compute $\frac{dy}{dx}$ where $y = x^x$.
- 5. Compute each of the following integrals:

(a)
$$\int \tan x \, dx.$$

(b)
$$\int_{0}^{\ln 2} \frac{e^{3x}}{\sqrt{8 + e^{3x}}} \, dx.$$

(c)
$$\int_{e^3}^{e^9} \frac{1}{5x} \, dx.$$

(d)
$$\int_{e}^{e^4} \frac{3}{x\sqrt{\ln x}} \, dx.$$

(e)
$$\int \frac{1}{x(1 + \ln x)} \, dx$$

Recall from class that the formula for Volumes of Revolution using the **Disk Method** and rotating about the *x*-axis was:

$$V = \int_{a}^{b} \pi \; (\text{radius})^2 \; dx$$

6. Let R be the region bounded by $y = e^x$, the x-axis, x = 0, and x = 2. Compute the volume of the solid formed by rotating R about the x-axis. Sketch the solid as well as one of the approximating disks.

Note: You should sketch both the 2 and 3-dimensional sketches.

Hint: To sketch one of the approximating disks, first sketch the approximating rectangle (from Area-Riemann sums days) in the 2-dimensional sketch. Then think about how that approximating rectangle spins around the axis.

Recall from class that the formula for Volumes of Revolution using the **Washer** Method and rotating about the x-axis was:

$$V = \int_{a}^{b} \pi \left[(\text{outer radius})^{2} - (\text{inner radius})^{2} \right] dx$$

7. Let R be the region bounded by $y = e^x + 1$, y = x + 1, x = 0, and x = 1. Compute the volume of the solid formed by rotating R about the x-axis. Sketch the solid as well as one of the approximating washers.

Turn in your own solutions.