Math 111, Section 01, Fall 2014

Worksheet 5, Tuesday, October 7, 2014

1. Compute the derivative of each of the following functions. For these problems, you do **not** need to simplify your derivative.

(a)
$$y = \frac{1}{\sqrt{x^2 - 5x + 3}}$$

(b) $y = \left(\frac{1}{x^3} + 7x\right)^{\frac{5}{7}} \left(x^4 - \frac{1}{x^7}\right)^{-5}$
(c) $y = \sqrt{\frac{x^2 + 5}{5 - 3x}}$
(d) $H(\theta) = \sec^2(\cos\theta)$

- 2. Compute each of the following derivatives. Simplify.
 - (a) $f'\left(\sqrt{\frac{\pi}{3}}\right)$, where $f(x) = \frac{1}{\tan(x^2)}$. Be careful with all the squares.
 - (b) $g''\left(\frac{\pi}{6}\right)$, where $g(x) = \frac{\cos x}{1 + \sin x}$. Hint: Simplify g'(x) before computing g''(x). Then compute the second derivative and evaluate g''(x) at $x = \frac{\pi}{6}$
- 3. Use (quick) differentiation rules (like we did in class) to show that $\frac{d}{dx} \tan x = \sec^2 x$.
- 4. Use (quick) differentiation rules (like we did in class) to show that $\frac{d}{dx} \sec x = \sec x \tan x$.
- 5. Let $W(x) = \cos^2(2x) + \tan(2x) + 3\sec x$. Compute $W'\left(\frac{\pi}{6}\right)$. Simplify your answer completely.

- 6. For each function below, find the equation of the tangent line to the curve f(x) at the given x-coordinate.
 - (a) $f(x) = \sin x$ at x = 0. (We did this in class.)
 - (b) $f(x) = \cos x$ at $x = \frac{\pi}{6}$.
 - (c) $f(x) = \tan x$ at $x = \frac{\pi}{3}$.
- 7. Simplify the expression $6(x+1)^2(1-2x)^4 + (x+1)^34(1-2x)^3(-2)$. Hint: Common factors.
- 8. For later purposes we need to practice solving.
 - (a) Consider the equation $x^2 + 2xyy' = 3y 7y'$. Solve for y'.
 - (b) Consider the equation $3y^2 \frac{dy}{dx} 5x^3y = 4x + 7\frac{dy}{dx}$. Solve for $\frac{dy}{dx}$.
- 9. Find **all** *x*-coordinates at which the graphs of the following functions have horizontal tangent lines. Please **simplify** your derivatives first. Why? You practiced doing that in #7 above.
 - (a) $f(x) = (7x 3)^4 (5x + 2)^6$
 - (b) $w(t) = t^2(1-t)^6$

Turn in solutions.