Worksheet 2, Tuesday, September 16, 2014

1. Compute the following limits. Justify your answers. Be clear if they equal a value, or $+\infty$, $-\infty$, or DNE.

(a)
$$\lim_{x \to 2} \frac{x^2 + 6x + 8}{x + 2}$$

(b)
$$\lim_{x \to 2} \frac{x^2 + 6x + 8}{x - 2}$$

(c)
$$\lim_{x \to 2} \frac{x^2 - 6x + 8}{x - 2}$$

(d)
$$\lim_{x \to 2} \frac{x^2 + 5x - 14}{x^2 - 4x + 12}$$

(e)
$$\lim_{x \to 2} \frac{x^2 + 5x - 14}{x^2 - 8x + 12}$$

(f)
$$\lim_{x \to -3} \frac{x^2 + 4x + 3}{x^2 - 2x - 15}$$

(g)
$$\lim_{x \to -3} \frac{x^2 + 4x + 3}{x^2 + 6x + 9}$$

(h)
$$\lim_{t\to 1} \frac{t-1}{g(t^2)-3}$$
 where $g(t)=2t+1$.

(i)
$$\lim_{x \to 0} \frac{x+1}{x(x+2)}$$

(j)
$$\lim_{x \to 3} \frac{x^2 - 2x - 3}{x^2 - 6x + 9}$$

(k)
$$\lim_{x \to -5} \frac{\frac{1}{4-x} - \frac{1}{9}}{x+5}$$

(l)
$$\lim_{x \to -3} \frac{x^2 - 4x - 21}{\sqrt{1 - x} - 2}$$

(m) Let
$$g(x) = \sqrt{x}$$
. Compute $\lim_{s \to 1} \frac{g(s^2 + 8) - 3}{s - 1}$

(n) Let
$$f(x) = \frac{1}{x}$$
. Compute $\lim_{t\to 2} \frac{f(t-1) - 2f(t)}{t^2 - 4}$

(o)
$$\lim_{x \to 4} \frac{|x-4|}{x-4}$$

(p)
$$\lim_{x\to -1} \frac{1}{|x+1|}$$
 (Hint: what's the graph of this function?)

- 2. Write out the rigorous $\varepsilon \delta$ **Definition of the Limit** $\lim_{x \to a} f(x) = L$. (Use your notes if you need to. You must learn this statement.)
- 3. Read the following written $\varepsilon \delta$ example proof.

Prove: $\lim_{x\to 2} 7x - 6 = 8$ using the $\varepsilon - \delta$ Definition of the Limit.

Scratchwork: we want $|f(x) - L| = |(7x - 6) - 8| < \varepsilon$; what restrictions on |x - 2| make that possible?

$$|f(x) - L| = |(7x - 6) - 8| = |7x - 14| = |7(x - 2)| = |7||x - 2| = 7|x - 2| \text{ (want } < \varepsilon$$
)
$$7|x - 2| < \varepsilon \text{ means } |x - 2| < \frac{\varepsilon}{7}, \text{ so choose } \delta = \frac{\varepsilon}{7}.$$

Proof: Let $\varepsilon > 0$ be given. Choose $\delta = \frac{\varepsilon}{7}$. Given x such that $0 < |x - 2| < \delta$, then

$$|f(x) - L| = |(7x - 6) - 8| = |7x - 14| = |7(x - 2)| = |7||x - 2| = 7|x - 2| < 7 \cdot \frac{\varepsilon}{7} = \varepsilon.$$

4. Follow the example above to give an $\varepsilon - \delta$ proof that $\lim_{x \to 1} 5x - 3 = 2$.

Turn in your solutions