Professor Danielle Benedetto -Math 11

1. Simplify each of the following

(a)
$$\ln(e^{\ln e})$$

(b) $\ln\left|\ln\frac{1}{e}\right|$

- 2. Solve each of the the following equations for x:
 - (a) $\ln(\ln x) = 1$
 - (b) $\ln(x^2) = 2 + \ln x$
 - (c) $e^{3x-4} = 7$
- 3. Decide whether each statement is True or False. Explain why or why not.
 - (a) $(e^x)^2 = e^{x^2}$
 - (b) $\ln 5 \ln 3 = \ln 2$

(c)
$$(\ln x)(\ln x) = \ln(x^2)$$

4. Let
$$x^2 e^y = \ln(xy)$$
. Find $\frac{dy}{dx}$.

- 5. Find the area enclosed by $y = e^x$, $y = e^{3x}$ and x = 1.
- 6. Find all maximum or minimum values for $g(x) = \ln(1 + x^2)$.
- 7. Compute the derivatives of the following functions. (Hint: You may want to simplify first.) (a) $f(x) = \ln(5xe^{-5x})$

(b)
$$f(x) = e^{(\ln(x^2 + x) - \ln x)}$$

(c)
$$f(x) = \ln\left(\frac{xe^x}{\sqrt{e^{7x}}}\right)$$

8. Compute the following Integrals:

(a)
$$\int \frac{we^{w^2}}{(17 + e^{w^2})^3} dw$$

(b) $\int \frac{e^{-x}\ln(1 + e^{-x})}{1 + e^{-x}} dx$
(c) $\int_e^{e^4} \frac{1}{x\sqrt{\ln x}} dx$
(d) $\int (e^{3x} + e^{-7x})^2 dx$

(d)
$$\int (e^{xx} + e^{-xx})^2 dx$$

(e)
$$\int \frac{1}{2x-1} dx$$

9. Let $f(x) = x^4 e^{-x}$. For this function, discuss domain, vertical and horizontal asymptote(s), interval(s) of increase or decrease, local extreme value(s), concavity, and inflection point(s). Then use this information to present a detailed and labelled sketch of the curve.

Take my word that $\lim_{x\to\infty} f(x) = 0$ and $\lim_{x\to-\infty} f(x) = +\infty$