Name:_____

Amherst College DEPARTMENT OF MATHEMATICS Math 111 Section 01 Midterm Exam #1 September 26, 2014

• This is a closed-book examination. No books, notes, calculators, cell phones, communication devices of any sort, or webpages, or other aids are permitted.

 \bullet Please show all of your work and justify all of your answers. (You may use the backs of pages for additional work space.)

Problem	Score	Possible Points
1		30
2		15
3		15
4		10
5		10
6		20
Total		100

1. [30 Points] Evaluate each of the following limits. Please **justify** your answers. Be clear if the limit equals a value, $+\infty$ or $-\infty$, or Does Not Exist.

(a)
$$\lim_{x \to -6} \frac{x^2 + 4x - 21}{x^2 - 5x - 6} =$$

(b)
$$\lim_{x \to 6} \frac{x^2 - 13x + 42}{|6 - x|} =$$

(c)
$$\lim_{x \to -3} \frac{f(2x) - 3f(x) - 7}{f(x+2) - 2} = \text{ where } f(x) = x^2 + 1$$

1. (Continued) Evaluate each of the following limits. Please **justify** your answers. Be clear if the limit equals a value, $+\infty$ or $-\infty$, or Does Not Exist.

(d)
$$\lim_{x \to -5} \frac{x^2 - x - 30}{x^2 + 10x + 25} =$$

(e)
$$\lim_{x \to 4} \frac{\frac{3-x}{x-5} - \frac{3}{7-x}}{\frac{x^2 - x - 12}{x-12}} =$$

2. [15 Points] Prove that $\lim_{x\to 2} 5 - 3x = -1$ using the $\varepsilon - \delta$ definition of the limit.

3. [15 Points] Suppose that $f(x) = \frac{5-2x}{1+6x}$. Compute f'(x) using the limit definition of the derivative.

4. [10 Points] Suppose that $f(x) = \sqrt{6-x}$. Write the equation of the tangent line to the curve y = f(x) where x = -3.

 $\ast\ast$ Use the limit definition of the derivative when computing the derivative. $\ast\ast$

5. [10 Points] Suppose that G and H are functions, and

•
$$\lim_{x \to 5} G(x) = 6$$

• $\lim_{x \to -9} H(x) = -4$
• $\lim_{x \to 8} G(x) = 7$
• $G(x)$ is continuous at $x = 8$.
• $H(x)$ is continuous at $x = 7$.
• $G(5) = -9$
• $H(7) = -9$

Answer the following questions or evaluate the following quantities and fully justify your answers.

(a) Compute G(8) =

(b) Compute $\lim_{x \to 7} H(x) =$

(c) Compute $H \circ G(8) =$

(d) Does H(-9) = -4? Yes, No, or Not Enough Information? Why or why not?

(e) Is G(x) continuous at x = 5?

6. [20 Points] Consider the function defined by

$$f(x) = \begin{cases} \sqrt{x-3} & \text{if } x > 3\\ 5 & \text{if } x = 3\\ 1-(x-2)^2 & \text{if } 2 < x < 3\\ 5-2x & \text{if } 0 \le x < 2\\ \frac{1}{x+3} & \text{if } x < 0 \end{cases}$$

(a) Carefully sketch the graph of f(x).

(b) State the **Domain** of the function f(x).

6. (Continued) Continue to consider the function defined by

$$f(x) = \begin{cases} \sqrt{x-3} & \text{if } x > 3\\ 5 & \text{if } x = 3\\ 1-(x-2)^2 & \text{if } 2 < x < 3\\ 5-2x & \text{if } 0 \le x < 2\\ \frac{1}{x+3} & \text{if } x < 0 \end{cases}$$

(c) Compute $\lim_{x \to -3} f(x) =$

- (d) Compute $\lim_{x\to 0} f(x) =$
- (e) Compute $\lim_{x\to 2} f(x) =$

(f) Compute $\lim_{x\to 3} f(x) =$

(g) State the value(s) at which f is discontinuous. Justify your answer(s) using definitions or theorems discussed in class.

OPTIONAL BONUS

Do not attempt this unless you are completely done with the rest of the exam.

OPTIONAL BONUS #1 Compute $\lim_{x \to 1} \frac{2|x-1| - |x+2| + |x| + |x+1|}{|x-1| + |3-x| - |x+1|} =$