Course Overview-Math 111

• Limits:

- Idea: $\lim_{x\to a} f(x) = L$ means f(x) gets close to L as x gets close to a.
- **Rigor:** $(\varepsilon \delta \text{ definition of a limit})$ For every $\epsilon > 0$, there exists a $\delta > 0$ such that for every x with $0 < |x a| < \delta$, we get $|f(x) L| < \epsilon$.
- Computation: Limit Laws, etc.
 - * direct substitution
 - * factoring
 - * conjugate trick with square roots
 - * common denominator
 - * absolute value
 - * infinite limits
 - * right- or left-handed limits
 - * limits at $\pm \infty$
- Uses: All of Calculus

• Derivatives:

- **Idea:** f'(x) = slope of the tangent line at (x, f(x))
- Rigor: (Limit definition) $f'(x) = \lim_{h \to 0} \frac{f(x+h) f(x)}{h}$
- Computation: Differentiation Rules: Product, Quotient, Chain Rules, etc.
- Uses: Tangent Lines, Related Rates, Max-Min, Optimization, Graphing, etc.

• Integrals:

- Idea: $\int_a^b f(x) dx$ is signed area under the curve.
- **Rigor:** (Limit definition) $\int_a^b f(x) \ dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i) \Delta x$ using Riemann Sums
- Computation: Fundamental Theorem of Calculus (antiderivatives $\int f(x) dx$), algebra combined with basic antidifferentiation rules, integration by substitution (with more techniques coming in Math 121)
- Uses: Areas, Volumes, Position-Velocity Problem (rectilinear motion)
- Special Functions: Trigonometry, e^x , or $\ln x$. Know graphs, derivatives (and where possible the antiderivatives), and properties.