Math 11 Final Review Packet for Remaining Material since Exam #3

Integration Compute each of the following integrals:

1.
$$\int x(x^2+1)^{14} dx$$

$$2. \int \sin(4x)\cos(4x) \ dx$$

3.
$$\int \frac{e^x - e^{-x}}{e^x + e^{-x}} dx$$

$$4. \int \frac{1}{x} \sqrt{1 + \ln x} \ dx$$

5.
$$\int \frac{1}{(x+1)\ln(x+1)} dx$$

$$6. \int \frac{\sin x}{7 + \cos x} \ dx$$

$$7. \int \frac{6e^x}{e^x + 7} \ dx$$

8.
$$\int \frac{e^{\ln(\sin x)}}{e^{\ln(\cos x+7)}} dx$$

9.
$$\int \ln(e^{x^2}e^xe^7) \ dx$$

10.
$$\int \frac{6x+3}{x^2+x-5} \ dx$$

11.
$$\int \frac{1}{1-2x} dx$$

12.
$$\int e^{3x+1} dx$$

13.
$$\int \frac{e^{-\frac{1}{x^7}}}{x^8} dx$$

$$14. \int \frac{1}{e^x} dx$$

15.
$$\int_0^1 \frac{1}{7x+1} \ dx$$

16.
$$\int_{e}^{e^2} \frac{1}{x(\ln x)^2} dx$$

17.
$$\int_{\ln 4}^{\ln 7} 9e^{2x} dx$$

18.
$$\int_0^{\ln 3} \left(2 + \frac{1}{e^x}\right)^2 dx$$

19.
$$\int \frac{we^{w^2}}{17 + e^{w^2}} \ dw$$

20.
$$\int_{\ln 2}^{\ln 3} e^{2x} dx$$

21.
$$\int \frac{e^{-x} \ln(1 + e^{-x})}{1 + e^{-x}} dx$$

$$22. \int_{e}^{e^4} \frac{1}{x\sqrt{\ln x}} \ dx$$

23.
$$\int (e^{3x} + e^{-7x})^2 dx$$

24.
$$\int \frac{1}{2x-1} dx$$

Derivatives/Tangent Lines

- 25. Find the equation of the tangent line to the curve $y = (x+2)e^{-x}$ at the point (0,2).
- 26. Find the equation of the tangent line to the curve $y = \ln(xe^{-3x})$ at the point (1, -3).

27. Let
$$y = \frac{\ln x}{1 + x^2}$$
, find $f'(1)$.

28. Let $f(x) = x \ln x$ with x > 0. Where is f(x) concave up?

29. Let
$$x^2 e^y = \ln(xy)$$
. Find $\frac{dy}{dx}$.

- 30. Find all local maximum and minimum value(s) of the function $f(x) = (x^2 7)e^{-x}$.
- 31. Compute the derivatives of the following functions. (Hint: You may want to simplify first.)

(a)
$$f(x) = \ln(5xe^{-5x})$$

(b)
$$f(x) = e^{(\ln(x^2 + x) - \ln x)}$$

(c)
$$f(x) = \ln\left(\frac{xe^x}{\sqrt{e^{7x}}}\right)$$

- 32. Let $f(x) = x^{\cos x}$. Compute f'(x).
- 33. Let $f(x) = (\tan x)^x$. Compute f'(x).
- 34. Let $f(x) = x^4 e^{-x}$. For this function, discuss domain, vertical and horizontal asymptote(s), interval(s) of increase or decrease, local extreme value(s), concavity, and inflection point(s). Then use this information to present a detailed and labelled sketch of the curve.

Take my word that
$$\lim_{x\to\infty} f(x) = 0$$
 and $\lim_{x\to-\infty} f(x) = +\infty$

Areas between Curves and Volumes of Revolution

- 35. Consider the region in the plane bounded by the curves $y = e^{x+1}$, $y = e^{2x}$, and the y-axis.
 - (a). Find the area of this region.
 - (b). Rotate this region about the x-axis. What is the volume of the resulting solid?
- 36. Consider the region enclosed by $y = e^{-x}$, $y = e^x$, and x = 2 and rotate it about the x-axis. What is the volume of the resulting solid?
- 37. Consider the region enclosed by $y = \frac{1}{x}$, y = 0, x = 1 and x = 3 and rotate it about the x-axis. What is the volume of the resulting solid?
- 38. Find the area enclosed by $y = e^x$, $y = e^{3x}$ and x = 1.

Properties of e^x and $\ln x$

- 39. Simplify each of the following
 - (a) $\ln(e^{\ln e})$
 - (b) $\ln \left| \ln \frac{1}{e} \right|$
- 40. Solve each of the the following equations for x:
 - (a) $\ln(\ln x) = 1$
 - (b) $\ln(x^2) = 2 + \ln x$
 - (c) $e^{3x-4} = 7$
- 41. Decide whether each statement is True or False. Explain why or why not.
 - (a) $(e^x)^2 = e^{x^2}$
 - (b) $\ln 5 \ln 3 = \ln 2$
 - (c) $(\ln x)(\ln x) = \ln(x^2)$