
Math11 Fall 2009 Exam #3 Friday December 4, 2009 Professor D. Benedetto

Please carefully write all of your answers in your Blue Book. Justify all of your answers. There
are No Calculators allowed.
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3. (10 Points) Find all local maximum and minimum value(s) of the function f(x) = x4e−x.

4. (15 Points) A toolshed with a square base and a flat roof is to have volume of 800 cubic
feet. If the floor costs $6 per square foot, the roof $2 per square foot, and the sides $5 per square
foot, determine the dimensions of the most economical shed. Remember to state the domain (or
common-sense-bounds) of the function you are computing extreme values for.

5. (10 Points) Compute the area bounded by y = 4 − x2, y = x + 2, x = −3, and x = 0.
Draw a picture of the region(s). Do not worry about simplifying your fractions in the final answer.

6. (20 Points) Compute

∫

4

0

x − 1 dx using each of the following three different methods:

(a) using Area interpretations of the definite integral,
(b) Fundamental Theorem of Calculus,
(c) Riemann Sums and the limit definition of the definite integral.

7. (10 Points) Jack throws a baseball straight downward from the top of a tall building. The
initial speed of the ball is 25 feet per second. It hits the ground with a speed of 153 feet per second.
How tall is the building?

TURN PAPER OVER FOR THE BONUS PROBLEMS PLEASE!!



REMEMBER: ALL OF YOUR WORK GOES IN THE BLUE ANSWER BOOK

**************************************************************************************

BONUS PROBLEMS: THESE ARE OPTIONAL!

Feel free to attempt either of the following two bonus problems, but ONLY if you are completely
done with the original part of the exam, problems 1-7.

**************************************************************************************

Bonus 1: Suppose f is continuous on [−a, a], PROVE each of the following two statements:

(a). If f is even, then

∫

a

−a

f(x) dx = 2

∫

a

0

f(x) dx

(b). If f is odd, then

∫

a

−a

f(x) dx = 0

Bonus 2: Consider a cone such that the height is 6 inches high and its base has diameter 6 in.
Inside this cone we inscribe a cylinder whose base lies on the base of the cone and whose top
intersects the cone in a circle. What is the maximum volume of the cylinder? Remember to state
the domain (or common-sense-bounds) of the function you are computing extreme values for.


