u-substitution technique for Integration

For this course we will have three main techniques of Integration.

1. We know it base Snap facts (with single variables)
2. Algebra, FOIL or split-split algebra
3. u-substitution

The technique of u-subsitution is a temporary convenience that essentially reverses the
Chain Rule.

Example: The Chain Rule yields

j—x sin (:vg) = 327 cos (x3) which gives /33:2 cos (:vg) dr = sin (x3) +C

Q: How can we compute these complicated integrals with nested pieces?

e The substitution method hides a nested part of your integrand and aims to match the
derivative piece at about the same time.

e We need to choose u to be a nested chunk of your integrand, pretty much a grab-of-sorts
of the inside portion of a composed function.

e Once you choose u as some hidden chunk of your integrand, that will yield a certain
derivative du. In the end, we want to choose a substitution u that simplifies the Integral
and also matches a part as the derivative.
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INDEFINITE Integrals: Always remember to add +C right away , as soon as you com-
pute the Most General Antiderivative. The original variable always reappears when we
re-substitute back for wu.
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(—cosu)+C = ~5 cos(6z) + C
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DEFINITE Integrals: Recall, you must change (or temporarily mark) your Limits of
integration. The variables and Limits of Integration change simultaneously. Once you switch
your Limits of Integration to u-values, then the original variable never reappears.
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OR here isan ALTERNATE option if you do not want to Change your Limits of Integration
to u-limits. If you opt to Mark your Limits of Integration instead of Changing them to u
Limits, then the original variable does reappear. Be careful not to mix and match z and «

pieces.
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Note: Same u-sub as above, and same final values . ..
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Here are some examples of inverted or reverse substitutions. When using a wu-subsitution,
we are fixing a (temporary) relationship between x and u for the entire problem. So, if there
are any extra x variable leftover after the standard w-substitution, then you can solve the
orginal choice of u in terms of z instead for x in terms of u. Then substitute that in for any
leftover x’s and then continue on with the antiderivative, etc.
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