

Homework #8

Due Wednesday, February 26th in Gradescope by 11:59 pm ET

Goal: Warm-Up Algebra for future Area Computations**FIRST:** Read through and understand the following Examples.**Function Evaluation** For these problems, i and n represent some constants. Evaluate the specific function value here in terms of i and n . Simplify the algebra by combining similar terms.Ex: Consider $f(x) = x^2 - 3x - 7$. Compute

$$\begin{aligned} f\left(-1 + \frac{3i}{n}\right) &= \left(-1 + \frac{3i}{n}\right)^2 - 3\left(-1 + \frac{3i}{n}\right) - 7 \\ &= 1 - \frac{6i}{n} + \frac{9i^2}{n^2} + 3 - \frac{9i}{n} - 7 = \boxed{\frac{9i^2}{n^2} - \frac{15i}{n} - 3} \end{aligned}$$

Ex: Consider $f(x) = x^2 - 5x + 2$. Compute

$$\begin{aligned} f\left(-2 + \frac{6i}{n}\right) &= \left(-2 + \frac{6i}{n}\right)^2 - 5\left(-2 + \frac{6i}{n}\right) + 2 \\ &= 4 - \frac{12i}{n} - \frac{12i}{n} + \frac{36i^2}{n^2} + 10 - \frac{30i}{n} + 2 = \boxed{\frac{36i^2}{n^2} - \frac{54i}{n} + 16} \end{aligned}$$

Limit Evaluations Practice evaluating limits arising in future problems. Helpful algebra . . .

$$\text{Ex: } \lim_{n \rightarrow \infty} \frac{n+1}{n} \stackrel{\text{split}}{=} \lim_{n \rightarrow \infty} \frac{n}{n} + \frac{1}{n} = \lim_{n \rightarrow \infty} 1 + \frac{1}{n} = \lim_{n \rightarrow \infty} 1 + \frac{\cancel{1}}{\cancel{n}^0} 1 + 0 = \boxed{1}$$

Ex:

$$\begin{aligned} \lim_{n \rightarrow \infty} \frac{n(n+1)}{n^2} &= \lim_{n \rightarrow \infty} \frac{n(n+1)}{n \cdot n} \stackrel{\text{partner}}{=} \lim_{n \rightarrow \infty} \left(\frac{n}{n}\right) \left(\frac{n+1}{n}\right) \\ &\stackrel{\text{split}}{=} \lim_{n \rightarrow \infty} (1) \left(\frac{n}{n} + \frac{1}{n}\right) = \lim_{n \rightarrow \infty} (1) \left(1 + \frac{1}{n}\right) = \lim_{n \rightarrow \infty} 1 + \frac{\cancel{1}}{\cancel{n}^0} 1 + 0 = \boxed{1} \end{aligned}$$

Next, Complete the following Homework problems.

For problems 1-6, i and n are some constants. Simplify, combine similar variables.

1. Consider $f(x) = 6x + 5$. Compute $f\left(\frac{4i}{n}\right)$
2. Consider $f(x) = 6x + 5$. Compute $f\left(-2 + \frac{3i}{n}\right)$
3. Consider $f(x) = x^2 - 6x - 7$. Compute $f\left(\frac{4i}{n}\right)$
4. Consider $f(x) = x^2 - 6x - 7$. Compute $f\left(5 + \frac{2i}{n}\right)$
5. Consider $f(x) = x^2 - 5x - 4$. Compute $f\left(\frac{3i}{n}\right)$
6. Consider $f(x) = x^2 - 5x - 4$. Compute $f\left(-4 + \frac{5i}{n}\right)$

For problems 7-18, Evaluate each of the Limits. You may need to use algebra to decompose the Limit into simpler pieces. Also use *arrows* to show the size arguments, either growing large towards ∞ and/or small towards 0.

7. $\lim_{n \rightarrow \infty} 8$
8. $\lim_{n \rightarrow \infty} \frac{1}{n}$
9. $\lim_{n \rightarrow \infty} \frac{6}{n}$
10. $\lim_{n \rightarrow \infty} \frac{n+4}{n}$
11. $\lim_{n \rightarrow \infty} \frac{2n+1}{n}$
12. $\lim_{n \rightarrow \infty} \frac{n(n+4)}{n^2}$
13. $\lim_{n \rightarrow \infty} \frac{n(n+1)(4n+1)}{n^3}$
14. $\lim_{n \rightarrow \infty} \frac{6}{n^2} \left(\frac{n(n+1)}{2} \right)$
15. $\lim_{n \rightarrow \infty} \frac{9}{n^3} \left(\frac{n(n+1)(2n+1)}{6} \right)$
16. $\lim_{n \rightarrow \infty} \frac{15}{n^3} \left(\frac{n(n+1)(2n+1)}{6} \right)$
17. $\lim_{n \rightarrow \infty} \frac{36}{n^3} \left(\frac{n(n+1)(2n+1)}{6} \right) - \frac{100}{n^2} \left(\frac{n(n+1)}{2} \right) + \left(\frac{7}{n} \right) n$
18. $\lim_{n \rightarrow \infty} \frac{24}{n^3} \left(\frac{n(n+1)(2n+1)}{6} \right) - \frac{42}{n^2} \left(\frac{n(n+1)}{2} \right) + \left(\frac{5}{n} \right) n$

REGULAR OFFICE HOURS

Monday: 12:00–3:00 pm 7:30–9:00 pm TA Andrew,

SMUDD **207**

Tuesday: 1:00–4:00 pm

Wednesday: 1:00–3:00 pm

Thursday: none for Professor

8:00–9:30 pm TA Andrew, SMUDD **208A**

Friday: 12:00–2:00 pm

- Present Final Drafts only please
- Justify all details, and show all steps