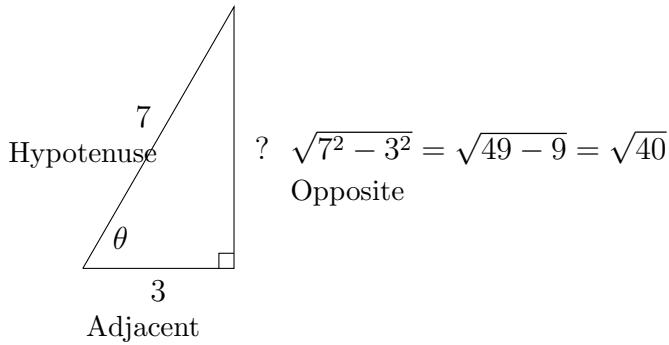


Homework #3


Due Wednesday, February 5th in Gradescope by 11:59 pm ET

Goal: More Trigonometry, Angles & Trigonometric Derivatives (including the Chain Rule).

FIRST: Read through and understand the following Examples.

Ex: Consider an angle θ where $0 \leq \theta < \frac{\pi}{2}$. Suppose that $\cos \theta = \frac{3}{7}$. Find the value for both $\sin \theta$ and $\tan \theta$.

Here, $\cos \theta = \frac{3}{7} = \frac{\text{Adjacent}}{\text{Hypotenuse}}$ and we can set up the related triangle using the given Trig ratio

As a result, we can read the sine and tangent off this reference triangle.

$$\sin \theta = \left[\frac{\sqrt{40}}{7} \right] = \frac{\text{Opposite}}{\text{Hypotenuse}} \quad \text{and} \quad \tan \theta = \left[\frac{\sqrt{40}}{3} \right] = \frac{\text{Opposite}}{\text{Adjacent}}$$

Ex: Consider $F(x) = \tan(2x) - \sin(3x)$. Compute $F' \left(\frac{\pi}{6} \right)$.

First, compute the derivative

$$F'(x) = \sec^2(2x) \cdot 2 - \cos(3x) \cdot 3 = 2 \sec^2(2x) - 3 \cos(3x)$$

Next, evaluate the derivative at the specific value $\frac{\pi}{6}$.

$$\begin{aligned} F' \left(\frac{\pi}{6} \right) &= 2 \sec^2 \left(2 \left(\frac{\pi}{6} \right) \right) - 3 \cos \left(3 \left(\frac{\pi}{6} \right) \right) = 2 \sec^2 \left(\frac{\pi}{3} \right) - 3 \cos \left(\frac{\pi}{2} \right) \\ &= \frac{2}{\cos^2 \left(\frac{\pi}{3} \right)} - 3 \cos \left(\frac{\pi}{2} \right) \xrightarrow{0} = \frac{2}{\left(\cos \left(\frac{\pi}{3} \right) \right)^2} - 0 = \frac{2}{\left(\frac{1}{2} \right)^2} = \frac{2}{\frac{1}{4}} = 2 \cdot \frac{4}{1} = \boxed{8} \end{aligned}$$

Next, Complete the following Homework problems.

For #1 – 2, evaluate the following Trig expressions, keeping $0 \leq \theta < \frac{\pi}{2}$

1. If $\sin \theta = \frac{1}{2}$, find $\cos \theta$ 2. If $\cos \theta = \frac{2}{5}$, find $\tan \theta$

For #3 – 4, use the facts $\frac{d}{dx} \sin x = \cos x$ and $\frac{d}{dx} \cos x = -\sin x$ to prove that

3. $\frac{d}{dx} \tan x = \sec^2 x$ and 4. $\frac{d}{dx} \sec x = \sec x \tan x$ **Memorize.**

For #5 – 6, solve for angle(s) θ in Radians keeping $0 \leq \theta < 2\pi$.

5. $\sin \theta = -\frac{1}{2}$ 6. $\sin \theta = -\frac{\sqrt{3}}{2}$

For #7 – 8, compute the following values. Justify. Show work on the Unit Circle/Trig Triangles.

7. $\cos \frac{4\pi}{3}$ 8. $\sin \frac{4\pi}{3}$

For #9 – 17, compute the Derivative for each of the following functions. Do **Not** simplify.

9. $y = \sin(x^2 - 5x + 8)$ 10. $f(x) = \sin^2 x$ 11. $y = \cos^6(3x)$

12. $y = \cos \sqrt{x}$ 13. $y = \sqrt{\cos x}$ 14. $f(x) = \frac{\cos(3x)}{\sin(4x)}$

15. $y = \tan\left(\frac{1}{x}\right)$ 16. $f(x) = \frac{1}{\tan x}$ 17. $y = \left(\frac{\cos x}{x^2 - \sin x}\right)^8$

18. Let $G(x) = \sin(2x) - \cos(3x)$. Compute $G'\left(\frac{\pi}{6}\right)$. Simplify your answer completely.

REGULAR OFFICE HOURS

Monday: 12:00–3:00 pm

Tuesday: 1:00–4:00 pm

TBA TA Andrew

Wednesday: 1:00–3:00 pm

Thursday: none for Professor

TBA TA Andrew

Friday: 12:00–2:00 pm

- We've finished a solid review of Trigonometry, and derivatives from Math 105. Aim to make clearer and neater solutions this week.
- Attend Office Hours regularly, both with Professor Benedetto and Math Fellow Andrew.