Homework #3

Due Wednesday, February 8th in Gradescope by 11:59 pm ET

Goal: More Trigonometry, Angles & Trigonometric Derivatives (including the Chain Rule).

For #1 - 2, evaluate the following Trig expressions, keeping $0 \le \theta < \frac{\pi}{2}$

1. If $\sin \theta = \frac{1}{2}$, find $\cos \theta = 2$. If $\cos \theta = \frac{2}{5}$, find $\tan \theta$

For #3-4, use the facts $\left[\frac{d}{dx}\sin x = \cos x\right]$ and $\left[\frac{d}{dx}\cos x = -\sin x\right]$ to prove that

3. $\left[\frac{d}{dx}\tan x = \sec^2 x\right]$ and 4. $\left[\frac{d}{dx}\sec x = \sec x \tan x\right]$ Memorize.

For #5-6, solve for angle(s) θ in Radians keeping $0 \le \theta < 2\pi$.

5. $\sin \theta = -\frac{1}{2}$ 6. $\sin \theta = -\frac{\sqrt{3}}{2}$

For #7-8, compute the following values. Justify. Show work on the Unit Circle/Trig Triangles.

7. $\cos \frac{4\pi}{3}$ 8. $\sin \frac{4\pi}{3}$

For #9-17, compute the Derivative for each of the following functions. Do **Not** simplify.

9. $y = \sin(x^2 - 5x + 8)$ 10. $f(x) = \sin^2 x$ 11. $y = \cos^6(3x)$

12. $y = \cos \sqrt{x}$ 13. $y = \sqrt{\cos x}$ 14. $f(x) = \frac{\cos(3x)}{\sin(4x)}$

15. $y = \tan\left(\frac{1}{x}\right)$ 16. $f(x) = \frac{1}{\tan x}$ 17. $y = \left(\frac{\cos x}{x^2 - \sin x}\right)^8$

18. Let $G(x) = \sin(2x) - \cos(3x)$. Compute $G'\left(\frac{\pi}{6}\right)$. Simplify your answer completely.

REGULAR OFFICE HOURS

Monday: 12:00–3:00 pm

Tuesday: 1:00–4:00 pm

7:30–9:00 pm TA Ellerman, SMUDD **204**

Wednesday: 1:00-3:00 pm

Thursday: none for Professor

7:30–9:00 pm TA Ellerman, SMUDD 207

Friday: 12:00–2:00 pm

- Weve finished a solid review of Trigonometry, and derivatives from Math 105. Aim to make clearer and neater solutions this week.
- Attend Office Hours regularly, both with Professor Benedetto and Math Fellow Ellerman Mateo.