Homework #16

Due Friday April 7th in Gradescope by 11:59 pm ET

Goal: Solidify early Exponentials

1. Sketch and label the graph of $f(x) = e^x$. Write the Domain and Range.

2(a) Write the Derivative formula for $f(x) = e^x$. That is, $\frac{d}{dx}e^x = ???$

2(b) Write the Chain Rule for $f(x) = e^{u(x)}$. That is, $\frac{d}{dx}e^{u(x)} = ???$

Differentiate each of the following functions.

3. $y = e^{x}$ 4. $y = e^{5}$ 5. $y = e^{2x}$ 6. $y = (x^{3} + 2x) \cdot e^{x}$ 7. $f(x) = \frac{e^{x}}{1 - e^{x}}$ 8. $f(x) = e^{-2x} \cdot \cos x$ 9. $y = \frac{1}{e^{x}}$ 10. $y = e^{3x} + \frac{1}{e^{3x}}$ 11. $y = e^{\sqrt{x}}$ 12. $f(x) = e^{\sin x}$ 13. $f(x) = \sin (e^{x})$ 14. $f(x) = x^{2} \cdot e^{x}$ 15. $f(x) = e^{\tan(4x)}$ 16. $f(x) = \tan (e^{4x})$ 17. $f(x) = \frac{1}{e^{7x}}$ 18. $f(x) = \sqrt{e^{x} + e^{5x}}$ 19. $f(x) = \frac{1}{\sqrt{x^{3} + e^{\cos x}}}$

20. Find the Equation of the Tangent Line to the curve $f(x) = \frac{1}{\cos x + e^{-8x}}$ at the point where x = 0.

REGULAR OFFICE HOURS Monday: 12:00–3:00 pm Tuesday: 1:00–4:00 pm 7:30–9:00 pm TA Ellerman, SMUDD 204 Wednesday: 1:00-3:00 pm Thursday: none for Professor 7:30–9:000 pm TA Ellerman, SMUDD 207 Friday: 12:00–2:00 pm

• Grab a seat in Office Hours, several times a week.