Math 106, Spring 2023

Homework #10

Due Wednesday, March 8th in Gradescope by 11:59 pm ET

Goal: Computing Area using the Limit Definition of the Definite Integral with Riemann Sums Definition: the Definite Integral of a function f from $x = a$ to $x = b$ is given by

$$
\begin{aligned}\n\text{(•)} \quad & \int_{a}^{b} f(x) \, dx &= \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x \\
&= \lim_{n \to \infty} \left[f(x_1) \Delta x + f(x_2) \Delta x + f(x_3) \Delta x + \ldots + f(x_i) \Delta x + \ldots + f(x_n) \Delta x \right]\n\end{aligned}
$$

Note: The Definite Integral is a Limit of a Sum of areas! Just think about this formula as

the Limiting Value of the sum of the areas of finitely many (n) approximating rectangles.

To compute definite integrals the *long (limit)* way, **follow these steps**:

Step 1: Given the integral \int^b a $f(x)$ dx, pick off or identify the integrand $f(x)$, and limits of integration (lower limit) a and (upper limit) b .

Step 2: Compute $\frac{\Delta x}{ }$ $\bar{b}-\bar{a}$ \overline{n} . This Width of each partitioned interval will be in terms of n . Step 3: Compute $x_i = a + i\Delta x$. Leave the *i* as your counter. You have the left-most endpoint a from Step 1. You have width $\overrightarrow{\Delta x}$ from Step 2. This endpoint x_i should be in terms of i and n. Step 4: Plug x_i and Δx into the formula (\bullet) above. Here it is again:

$$
\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x \qquad \qquad \text{MEMORIZE!}
$$

Step 5: Use the following formulas for sum of integers i and finish evaluating the limit in n.

$$
\sum_{i=1}^{n} 1 = n \qquad (*) \sum_{i=1}^{n} i = \frac{n(n+1)}{2} \qquad (*) \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}
$$

$$
(***) \sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2
$$

Note: your final answer for the definite integral should be a number after you finish the limit.

Read through the entire next problem. Make sure you understand the formula to start, as well as the formulas for Δx and x_i . Because it doesn't feel natural yet, just trust the formulas right now. Use arrows to justify the final limiting size argument.

.

Evaluate \int^6 $\boldsymbol{0}$ x^2 dx using the Limit Definition of the Definite Integral (and Riemann Sums). Here $f(x) = x^2$, $a = 0$, $b = 6$, $\Delta x =$ $b - a$ n = $6 - 0$ n = 6 $\frac{0}{n}$ and $x_i = a + i\Delta x = 0 + i$ $\sqrt{6}$ n \setminus = 6i \overline{n} \int_0^6 $\boldsymbol{0}$ $x^2 dx = \lim_{n \to \infty}$ $\sum_{n=1}^{\infty}$ $\sum_{i=1} f(x_i) \Delta x = \lim_{n \to \infty}$ $\sum_{n=1}^{\infty}$ $i=1$ f $6i$ \overline{n} $\binom{6}{ }$ \overline{n} \setminus $=\lim_{n\to\infty}$ $\sum_{i=1}^n\Bigg(\bigg(\frac{6i}{n}$ n $\left\langle \right\rangle ^{2}$ 6 n $=\lim_{n\to\infty}$ 6 n $\sum_{n=1}^{\infty}$ $i=1$ $36i^2$ $\frac{\partial v}{\partial n^2}$ factor all non-*i* pieces out $=\lim_{n\to\infty}\left(\frac{216}{n^3}\right)$ $n³$ $\sum_{n=1}^{\infty}$ $i=1$ $\binom{1}{i^2}$ $=\lim_{n\to\infty}\left(\frac{216}{n^3}\right)$ n^3 $\frac{n(n+1)(2n+1)}{c}$ 6 \setminus using (∗∗) $=\lim_{n\to\infty}\left(\frac{216}{6}\right)$ 6 $\frac{n(n+1)(2n+1)}{2}$ n^3 \setminus $=\lim_{n\to\infty}\left(\frac{216}{6}\right)$ 6 $\frac{n(n+1)(2n+1)}{2n+1}$ $n \cdot n \cdot n$ \setminus repartner $=\lim_{n\to\infty}\left(\frac{216}{6}\right)$ 6 \cdot (ĥ $\frac{\eta}{2}$ n $\big\}$. $(n+1)$ n \setminus · $(2n + 1)$ n $\big)$ split $=\lim_{n\to\infty}$ $\sqrt{ }$ $\left\lfloor \right\rfloor$ 216 6 \cdot 1 \cdot $\sqrt{ }$ $\left(1+\frac{1}{n}\right)$ ✄✗ β 1 n λ $\vert \cdot$ $\sqrt{ }$ $\left(2+\frac{7}{h}\right)$ ✄✗ β 1 n λ $\Big\}$ \setminus $\Big\}$ = 216 6 $\cdot 1 \cdot 2 = \frac{216}{2}$ 3 $= | 72$

Read through the entire next problem. Make sure you understand the formula to start, as well as the formulas for Δx and x_i . Here the lower limit of integration a is **not** 0.

Evaluate \int^4 1 $6 - 3x \, dx$ using the Limit Definition of the Definite Integral (and Riemann Sums). Here $f(x) = 6 - 3x, a = 1, b = 4, \Delta x =$ $b - a$ n = $4 - 1$ \overline{n} = 3 n and $x_i = a + i\Delta x = 1 + i$ $\sqrt{3}$ n \setminus $= 1 +$ $3i$ \overline{n} . \int_0^4 $\int_{1} 6 - 3x \ dx = \lim_{n \to \infty}$ $\sum_{n=1}^{\infty}$ $\sum_{i=1} f(x_i) \Delta x = \lim_{n \to \infty}$ $\sum_{n=1}^{\infty}$ $i=1$ f $\sqrt{ }$ $1 +$ $3i$ n $\binom{3}{3}$ n \setminus $=\lim_{n\to\infty}$ $\sum_{n=1}^{\infty}$ $i=1$ $\sqrt{ }$ $6 - 3$ $\sqrt{ }$ $1 +$ $3i$ n \bigwedge 3 n $=\lim_{n\to\infty}\left(\frac{3}{n}\right)$ n $\sum_{n=1}^{\infty}$ $i=1$ $\sqrt{ }$ $3-\frac{9i}{5}$ \overline{n} \setminus next distribute $=\lim_{n\to\infty}\left(\frac{3}{n}\right)$ n $\left(\sum_{n=1}^{\infty}\right)$ $i=1$ $3-\sum_{n=1}^{\infty}$ $i=1$ $9i$ n \setminus $=\lim_{n\to\infty}\left(\frac{3}{n}\right)$ n $\sum_{n=1}^{\infty}$ $i=1$ $3-\frac{3}{7}$ \overline{n} $\sum_{n=1}^{\infty}$ $i=1$ $9i$ n \setminus $=\lim_{n\to\infty}$ $\sqrt{ }$ $\overline{ }$ 9 $n\frac{2}{\cancel{\ell}}$ ✓ ✓ ✓✓✼ n $\sum_{n=1}^{\infty}$ $\ell=1$ $\sqrt{1-\frac{27}{2}}$ $n²$ $\sum_{n=1}^{\infty}$ $i=1$ i \setminus $\Big\}$ $=\lim_{n\to\infty}$ 9 χ $(x) - \frac{27}{2}$ $n²$ $(n(n+1))$ 2 \setminus using (∗) $=\lim_{n\to\infty} 9 - \frac{27}{2}$ 2 $\sqrt{ }$ ĥ $\frac{\eta}{2}$ n $\binom{n+1}{n}$ n \setminus $=\lim_{n\to\infty} 9 - \frac{27}{2}$ 2 (1) $\sqrt{ }$ $\left(1+\frac{1}{h}\right)$ ✄✗ β 1 n λ \vert $= 9 - \frac{27}{8}$ 2 = 18 2 $-\frac{27}{2}$ 2 $=\left|-\frac{9}{2}\right|$ 2

Read through the entire next problem. The lower limit of integration a is **negative** this time. Evaluate \int^3 −2 $x^2 - 4x + 3$ dx using the Limit Definition of the Definite Integral.

Here $f(x) = x^2 - 4x + 3$, $a = -2$, $b = 3$, $\Delta x = \frac{b-a}{a}$ n = $3 - (-2)$ n = 5 n and $x_i = a + x_i = -2 + i$ $\sqrt{5}$ n \setminus $=-2+\frac{5i}{4}$ n .

$$
\int_{-2}^{3} x^{2} - 4x + 3 \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}) \Delta x = \lim_{n \to \infty} \sum_{i=1}^{n} f\left(-2 + \frac{5i}{n}\right) \left(\frac{5}{n}\right)
$$

\n
$$
= \lim_{n \to \infty} \frac{5}{n} \sum_{i=1}^{n} \left(-2 + \frac{5i}{n}\right)^{2} - 4\left(-2 + \frac{5i}{n}\right) + 3
$$

\n
$$
= \lim_{n \to \infty} \frac{5}{n} \sum_{i=1}^{n} \left(4 - \frac{20i}{n} + \frac{25i^{2}}{n^{2}} + 8 - \frac{20i}{n} + 3\right)
$$

\n
$$
= \lim_{n \to \infty} \frac{5}{n} \sum_{i=1}^{n} \left(\frac{25i^{2}}{n^{2}} - \frac{40i}{n} + 15\right) \text{ now distribute coeff/sum}
$$

\n
$$
= \lim_{n \to \infty} \frac{5}{n} \sum_{i=1}^{n} \frac{25i^{2}}{n^{2}} - \frac{5}{n} \sum_{i=1}^{n} \frac{40i}{n} + \frac{5}{n} \sum_{i=1}^{n} 15
$$

\n
$$
= \lim_{n \to \infty} \frac{125}{n^{3}} \sum_{i=1}^{n} i^{2} - \frac{200}{n^{2}} \sum_{i=1}^{n} i + \frac{75}{n} \sum_{i=1}^{n} 1 \text{ now use (*)}/(**)
$$

\n
$$
= \lim_{n \to \infty} \frac{125}{n^{3}} \left(\frac{n(n+1)(2n+1)}{6}\right) - \frac{200}{n^{2}} \left(\frac{n(n+1)}{2}\right) + \frac{75}{n} (n)
$$

\n
$$
= \lim_{n \to \infty} \frac{125}{6} \left(\frac{n}{n}\right) \left(\frac{n+1}{n}\right) \left(\frac{2n+1}{n}\right) - \frac{200}{2} \left(\frac{n}{n}\right) \left(\frac{n+1}{n}\right) + 75
$$

\n
$$
= \lim_{n
$$

\star Now complete these Homework problems:

1. Compute by hand, manually, the Area bounded above by the graph of $y = 2x+5$ and bounded below by $y = 0$ and between $x = 0$ and $x = 3$. Sketch the graph and shade the bounded region.

2. Evaluate \int_0^3 0 $2x+5$ dx using the Limit Definition of the Definite Integral (and Riemann Sums)

3. Compute by hand, manually, the Net Area bounded between the graph of $y = 4 - 2x$ and the x-axis $(y = 0)$ and between $x = 1$ and $x = 5$. Sketch the graph and shade the bounded region.

4. Evaluate \int_0^5 1 $4-2x$ dx using the Limit Definition of the Definite Integral (and Riemann Sums)

NOTE: Recall the Definite Integral computes the Area bounded above the x-axis minus the Area bounded below the x-axis.

5. Evaluate \int_0^4 0 x^2 dx using the Limit Definition of the Definite Integral (and Riemann Sums). Sketch the graph and shade the bounded region.

6. Evaluate \int_0^2 −1 $x^2 - 3x + 2$ dx using the Limit Definition of the Definite Integral (and Riemann Sums). Sketch the graph and shade the bounded region.

REGULAR OFFICE HOURS

Monday: 12:00–3:00 pm

Tuesday: 1:00–4:00 pm

7:30–9:00 pm TA Ellerman, SMUDD 204

Wednesday: 1:00-3:00 pm

Thursday: none for Professor

7:30–9:000 pm TA Ellerman, SMUDD 207 Friday: 12:00–2:00 pm

• Enjoy your Spring Vacation!!