Math 106, Spring 2017

Worksheet 1, Friday, January 26th, 2018

- 1. Graph the function $y = \sin x$ on the interval $[0, 2\pi]$. Answer the following:
- (a) $\sin 0 =$ (b) $\sin \pi =$ (c) $\sin \frac{\pi}{2} =$ (d) $\sin \frac{3\pi}{2} =$ (e) $\sin 2\pi =$
- 2. Graph the function $y = \cos x$ on the interval $[0, 2\pi]$. Answer the following:
- (a) $\cos 0 =$
- (b) $\cos \pi =$
- (c) $\cos \frac{\pi}{2} =$
- (d) $\cos \frac{3\pi}{2} =$
- (e) $\cos 2\pi =$

3. Compute the following trig. values. Justify by showing the work on the Unit Circle.

(a) Compute $\sin \frac{2\pi}{3} =$ (b) Compute $\cos \frac{2\pi}{3} =$ (c) Compute $\sin \frac{5\pi}{3} =$ (d) Compute $\cos \frac{5\pi}{3} =$ (e) Compute $\cos \frac{3\pi}{4} =$ (f) Compute $\tan \frac{5\pi}{6} =$ (g) Compute $\sin \frac{11\pi}{6} =$ **FACT:** The derivative of $\sin x$ is equal to $\cos x$. That is,

$$\frac{d}{dx}\sin x = \cos x$$
 Memorize.

FACT: The derivative of $\cos x$ is equal to $-\sin x$. That is,

$$\frac{d}{dx}\cos x = -\sin x$$
 Memorize.

4. For each function below, find the equation of the tangent line to the curve f(x) at the given x-coordinate.

- (a) $f(x) = \sin x$ at x = 0.
- (b) $f(x) = \cos x$ at $x = \frac{\pi}{6}$.
- (c) $f(x) = \tan x$ at $x = \frac{\pi}{3}$.
- 5. Use the above facts and differentiaton rules to show that

$$\frac{d}{dx}\tan x = \sec^2 x \qquad \text{Memorize.}$$

6. Use the above facts and differentiaton rules to show that

$$\frac{d}{dx}\sec x = \sec x \tan x \qquad \text{Memorize.}$$

Practice:

$$\frac{d}{dx}\sin(2x) = \cos(2x)2$$
$$\frac{d}{dx}\sin^2 x = \frac{d}{dx}(\sin x)^2 = 2\sin x(\cos x)$$
$$\frac{d}{dx}\sin^2(3x) = \frac{d}{dx}(\sin(3x)^2 = 2\sin(3x)(\cos(3x))3$$

7. Let $W(x) = \cos^2(2x) + \tan(2x) + 3\sec x$. Compute $W'\left(\frac{\pi}{6}\right)$. Simplify your answer completely.

Turn in your own solutions.