Name:___

Amherst College DEPARTMENT OF MATHEMATICS Math 106 Midterm Exam #1 February 16, 2018

• This is a closed-book examination. No books, notes, calculators, cell phones, communication devices of any sort, webpages, or other aids are permitted.

• Simplify numerical answers such as $\sin\left(\frac{\pi}{6}\right)$ and $4^{\frac{3}{2}}$.

• Please *show* all of your work and *justify* all of your answers. (You may use the backs of pages for additional work space.)

Problem	Score	Possible Points
1		22
2		15
3		20
4		15
5		12
6		16
Total		100

- 1. [22 Points] Differentiate each of the following functions. Do not simplify your answers.
- (a) $f(x) = \cos \pi + \sqrt{\cos \sqrt{x}}$
- (b) $f(x) = \cos(\sin x)$
- (c) $f(x) = \cos x \cdot \sin x$

(d)
$$f(x) = \cos^5\left(\frac{7}{x^6}\right)$$

(e)
$$f(x) = \left(\frac{\cos(7x)}{\tan(3x)}\right)^{\frac{7}{8}}$$

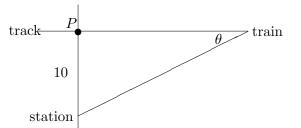
2. [15 Points] Derivatives
(a) Let
$$f(x) = \frac{1}{\sin^2 x} + \tan(2x) \cdot \sin(2x)$$
. Compute $f'\left(\frac{\pi}{6}\right)$. Simplify.

(b) Let
$$f(x) = 4\sin\left(x - \frac{\pi}{4}\right) - \cos x - \tan^2 x$$
. Show that $f'\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$.

3. [20 Points] Compute the following **most general antiderivatives.** Do not simplify your final answer.

(a)
$$\int \frac{5}{6}x + x^{\frac{5}{6}} + \frac{1}{x^{\frac{5}{6}}} + \frac{6}{5} + \frac{5}{6x^6} - \frac{6}{x^5} dx$$

(b)
$$\int \sec^2 x - 8\cos x + \sin x + \frac{\sec x \tan x}{7} dx$$


 ${\bf 3.}$ (Continued) Compute the following most general antiderivatives. Do not simplify your final answer.

(c)
$$\int \left(x^2 + \frac{1}{x^2}\right) \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right) dx$$

(d)
$$\int \frac{x^2 + \sqrt{x}}{x^{\frac{3}{7}}} dx$$

4. [15 Points] Consider a point P on a train track. Suppose a train depot station is 10 feet directly south from this point P. The train is travelling east at 6 feet per second. Consider the angle as shown in the diagram. How fast is this angle changing when 2 seconds has passed since the train passed point P.

• Diagram

The picture at arbitrary time t is:

5. [12 Points] Consider a function f such that $f''(x) = \pi \sin x + 2 \cos x$ and $f'\left(\frac{\pi}{2}\right) = 0$ and $f(\pi) = 2$. Compute f(x).

6. [16 Points] For each of the following use a(t) = -32 feet per second squared as acceleration due to gravity on the falling body.

(a) A ball is thrown upwards from the top of a building with an initial *speed* of 32 feet per second. The ball hits the ground below with a *speed* of 64 feet per second. How tall is the building?

6. (Continued) For each of the following use a(t) = -32 feet per second squared as acceleration due to gravity on the falling body.

(b) A ball is dropped straight down from the top of a building 64 feet tall, with initial velocity of 0 feet per second. What is the velocity at impact?