HOMEWORK #7

Math 106 Review Packet for Exam #1 **Due Friday February 9** at the beginning of class.

Derivatives

1. Differentiate each of the following functions. **Do not** simplify your answers.

(a)
$$f(x) = \frac{\left(\cos x - \frac{1}{\sqrt{x}}\right)^9}{\sec(4x)}$$

(b) $y = \sin^3(x^3)$

(c)
$$f(t) = t^2 \sin^5(2t)$$

(d) $g(x) = \cos(3x)\sin(4x)$

(e)
$$g(x) = \frac{\cos(3x)}{\sin(4x)}$$

(f)
$$g(t) = \cos\left(\sin^3\left(\frac{t}{\sqrt{t+1}}\right)\right)$$

(g)
$$g(x) = \sqrt{\cos(x^2 - \sin x)} + \sin\sqrt{x^2 + \sec x} + \frac{1}{\tan(\sqrt{x} + \cos x)}$$

2. Compute
$$f'\left(\frac{\pi}{12}\right)$$
, where $f(x) = \cos^2(2x) + \sec(4x) + \frac{\sqrt{3}}{\tan^2(3x)}$. Simplify.

- 3. Consider $\sin(xy) = \sec x + \cos(\pi) y$. Compute the derivative $\frac{dy}{dx}$.
- 4. Compute the equation of the tangent line for each curve at the given point.
 - (a) $4\cos x \sin y = 3$ at $(\pi/6, \pi/3)$.
 - (b) $y^3 xy^2 + \cos(xy) = 2$ at (0, 1)

Related Rates

5. A photographer is televising a 100-yard dash from a position 5 yards from the track in line with the finish line. When the runners are 12 yards from the finish line, the camera is turning at the rate of $\frac{3}{5}$ radians per second. How fast are the runners moving then?

Antiderivatives

- 6. An object moves on a number line. Its acceleration at time t is given by $a(t) = t + \cos t$ ft/sec². Assume also that its velocity at time t = 0 is 3 feet per second, and its position at time t = 0 is at -2 feet on the number line. Find its position at time t.
- 7. If $f'(t) = t^2(1+t) + 2\sin t$ and f(0) = 3, find f(t).
- 8. Find the general antiderivative of $\frac{x^2 + \sqrt{x}}{x^{\frac{3}{7}}}$.
- 9. Find the general antiderivative of $\left(x^2 + \frac{1}{x^2}\right)\left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)$.