Worksheet 2, Tuesday, February 13th, 2024 Antiderivatives

Definition: Take F, f functions defined on an interval I and suppose that F'(x) = f(x) on I. Then

- F(x) is called **AN** Antiderivative of f(x)
- F(x) + C is called **the Most General** Antiderivative of f(x), where C is any constant Real Number.

We will use the notation $\int f(x) dx$ to denote the Most General Antiderivative. The symbols \int and dx are partnered-together *instructions* to compute the Most General Antiderivative.

For example: $\int x^7 dx = \frac{x^8}{8} + C$ where +C represent all possible constants. This means that $\frac{d}{dx} \left(\frac{x^8}{8} + C \right) = x^7$ which looks correct to us.

Note that $\frac{x^8}{8} + 3$ is **an** antiderivative of x^7 . So is $\frac{x^8}{8} + 2022$ as well as $\frac{x^8}{8} - 5$ and $\frac{x^8}{8} + \sqrt{3}$.

Hint: if you ever want to know whether you found the correct antiderivative, take the derivative of your answer and check that you return to the original function.

1. Write a general power rule for $\int x^n dx$ where n is any real number with $n \neq -1$. (We will learn the n = -1 case at the very end of this semester.)

Compute each of the following Most General Antiderivatives

2.
$$\int \sqrt{x} \, dx$$
 3. $\int \frac{1}{x^9} \, dx$ 4. $\int \frac{1}{\sqrt{x}} \, dx$ 5. $\int \frac{1}{x^{\frac{3}{7}}} \, dx$

6.
$$\int \cos x \, dx$$
 7. $\int \sin x \, dx$ 8. $\int \sec^2 x \, dx$ 9. $\int \sec x \tan x \, dx$

For #10 - 11, consider $f(x) = \frac{3}{4}x + x^{\frac{3}{4}} - \frac{1}{x^{\frac{3}{4}}} + \frac{4}{3} + \frac{1}{x^{\frac{4}{3}}} + \frac{3}{4x^4} - \frac{4}{x^3}$ Hint: prep $\frac{1}{x^a} = x^{-a}$

10. Compute
$$f'(x) = \frac{d}{dx} \left(\frac{3}{4}x + x^{\frac{3}{4}} - \frac{1}{x^{\frac{3}{4}}} + \frac{4}{3} + \frac{1}{x^{\frac{4}{3}}} + \frac{3}{4x^4} - \frac{4}{x^3} \right)$$

11. Compute
$$\int f(x) \ dx = \int \frac{3}{4}x + x^{\frac{3}{4}} - \frac{1}{x^{\frac{3}{4}}} + \frac{4}{3} + \frac{1}{x^{\frac{4}{3}}} + \frac{3}{4x^4} - \frac{4}{x^3} \ dx$$

Find the Most General Antiderivative of the following functions. You may need to use some Algebra to prep the function pieces for each Power Rule and/or Sum or Difference Rule(s).

12.
$$\int x^3 (1+x^2) \ dx$$

13.
$$\int \frac{x + \sqrt{x} + 7}{x^3} dx$$

14.
$$\int x^2 + x(1+x)^2 \ dx$$

15.
$$\int -3\cos x - \sec^2 x - 7\sec x \tan x - \sin x \, dx$$

16. Consider the curve $y = 2x + \sin x$. Explain why the tangent lines of this curve are never horizontal.

Find the indicated functions f(x) that also satisfies the given conditions:

17.
$$f'(x) = 2 + \sin x$$
 and $f(\frac{\pi}{2}) = 3$.

18.
$$f'(x) = x^2 + 1$$
 and $f(1) = 3$.

19.
$$f'(x) = x(2 + \sqrt{x})$$
 and $f(4) = 30$.

20.
$$f''(x) = \frac{1}{\sqrt{x}} + 3x^2$$
 and $f'(1) = 2$, $f(1) = 0$.

- 21. Can you use a guess and check approach to compute the function f(x) where $f'(x) = \sin(3x)$? Check your answer. How? Think about reversing the Chain Rule here...
- 22. CHALLENGE: Can you use a guess and check approach to compute the function f(x) where $f'(x) = \frac{\sec x \tan x}{\sqrt{\sec x + 8}}$ and f(0) = 7? Check your answer.

Turn in your own solutions into Gradescope before 11:59 pm today, Tuesday Feb 13

Finish at least through number 18