Math 106 Take-Home Quiz #4 Due Sunday, March 10, 2024 in Gradescope by 11:59 pm ET

Instructions:

• This is an Open Notes Quiz. You can use materials, homeworks problems, lecture notes, etc. that you manually worked on.

• This is **NOT** an Open Internet Quiz. You can only access our Main Course Webpage.

• You are not allowed to work on or discuss these problems with other students, professor, Math Fellow TA or simply put anyone.

• You can ask a few small, clarifying, questions in Office Hours, but the problems will not be solved for you.

• The main goal is to make a thoughtful and detailed presentation for the solutions. Submit a clear final draft. No mess please.

• Please submit your final work in Gradescope in the Quiz 4 entry.

1. [10 points] Evaluate $\int_{1}^{4} x^2 - 3x \, dx$ using the *Limit Definition of the Definite Integral*. Then draw a sketch of the bounded region and explain why the answer is negative.

2. [30 points] Evaluate each of the following Definite Integrals. Show all work. Justify.

(a)
$$\int_{1}^{4} x^{2} - 3x \, dx = \boxed{-\frac{3}{2}}$$
 (b) $\int_{-7}^{7} 7 \, dx = \boxed{98}$ (c) $\int_{\frac{\pi}{6}}^{\pi} \sin \theta \, d\theta = \boxed{\frac{2 + \sqrt{3}}{2}}$

(d)
$$\int_{1}^{4} \frac{1+x}{\sqrt{x}} dx = \boxed{\frac{20}{3}}$$
 (e) $\int_{1}^{2} \frac{(1+x)^{2}}{x^{4}} dx = \boxed{\frac{37}{24}}$ (f) $\int_{1}^{4} \frac{(x+1)\left(\frac{1}{x}-1\right)}{\sqrt{x}} dx = \boxed{-\frac{11}{3}}$

DO NOT SPEAK TO ANYONE ELSE ABOUT THIS QUIZ