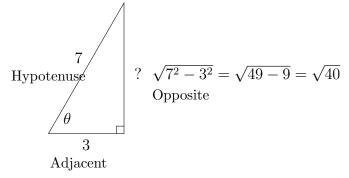
Math 106, Spring 2024

Homework #3


Due Wednesday, February 7th in Gradescope by 11:59 pm ET

Goal: More Trigonometry, Angles & Trigonometric Derivatives (including the Chain Rule).

FIRST: Read through and understand the following Examples.

Ex: Consider an angle θ where $0 \le \theta < \frac{\pi}{2}$. Suppose that $\cos \theta = \frac{3}{7}$. Find the value for both $\sin \theta$ and $\tan \theta$.

Here, $\cos \theta = \frac{3}{7} = \frac{\text{Adjacent}}{\text{Hypotenuse}}$ and we can set up the related triangle using the given Trig ratio

As a result, we can read the sine and tangent off this reference triangle.

 $\sin \theta = \boxed{\frac{\sqrt{40}}{7}} = \frac{\text{Opposite}}{\text{Hypotenuse}} \quad \text{and} \quad \tan \theta = \boxed{\frac{\sqrt{40}}{3}} = \frac{\text{Opposite}}{\text{Adjacent}}$

Ex: Consider $F(x) = \tan(2x) - \sin(3x)$. Compute $F'\left(\frac{\pi}{6}\right)$. First, compute the derivative

 $F'(x) = \sec^2(2x) \cdot 2 - \cos(3x) \cdot 3 = 2\sec^2(2x) - 3\cos(3x)$

Next, evaluate the derivative at the specific value $\frac{\pi}{6}$.

$$F'\left(\frac{\pi}{6}\right) = 2\sec^2\left(2\left(\frac{\pi}{6}\right)\right) - 3\cos\left(3\left(\frac{\pi}{6}\right)\right) = 2\sec^2\left(\frac{\pi}{3}\right) - 3\cos\left(\frac{\pi}{2}\right)$$
$$= \frac{2}{\cos^2\left(\frac{\pi}{3}\right)} - 3\cos\left(\frac{\pi}{2}\right) = \frac{2}{\left(\cos^2\left(\frac{\pi}{3}\right)\right)^2} = \frac{2}{\left(\cos^2\left(\frac{\pi}{3}\right)\right)^2} = \frac{2}{\left(\frac{\pi}{2}\right)^2} = \frac{2}{\frac{1}{4}} = 2 \cdot \frac{4}{1} = \boxed{8}$$

Next, Complete the following Homework problems.

For #1-2, evaluate the following Trig expressions, keeping $0 \le \theta < \frac{\pi}{2}$ 1. If $\sin \theta = \frac{1}{2}$, find $\cos \theta = 2$. If $\cos \theta = \frac{2}{5}$, find $\tan \theta$

For
$$\#3 - 4$$
, use the facts $\boxed{\frac{d}{dx}\sin x = \cos x}$ and $\boxed{\frac{d}{dx}\cos x = -\sin x}$ to prove that
3. $\boxed{\frac{d}{dx}\tan x = \sec^2 x}$ and 4. $\boxed{\frac{d}{dx}\sec x = \sec x\tan x}$ Memorize.

For #5-6, solve for angle(s) θ in Radians keeping $0 \le \theta < 2\pi$.

5.
$$\sin \theta = -\frac{1}{2}$$
 6. $\sin \theta = -\frac{\sqrt{3}}{2}$

For #7-8, compute the following values. Justify. Show work on the Unit Circle/Trig Triangles.

7.
$$\cos\frac{4\pi}{3}$$
 8. $\sin\frac{4\pi}{3}$

For #9-17, compute the Derivative for each of the following functions. Do **Not** simplify.

9. $y = \sin(x^2 - 5x + 8)$ 10. $f(x) = \sin^2 x$ 11. $y = \cos^6(3x)$

12. $y = \cos \sqrt{x}$ 13. $y = \sqrt{\cos x}$ 14. $f(x) = \frac{\cos(3x)}{\sin(4x)}$ 15. $y = \tan\left(\frac{1}{x}\right)$ 16. $f(x) = \frac{1}{\tan x}$ 17. $y = \left(\frac{\cos x}{x^2 - \sin x}\right)^8$

18. Let $G(x) = \sin(2x) - \cos(3x)$. Compute $G'\left(\frac{\pi}{6}\right)$. Simplify your answer completely.

REGULAR OFFICE HOURS

Monday: 12:00–3:00 pm

Tuesday: 1:00–4:00 pm

7:30–9:00 pm TA Alexa, SMUDD 208a

Wednesday: 1:00-3:00 pm

Thursday: none for Professor

6:00–7:30 pm TA Alexa, SMUDD 208a

Friday: 12:00–2:00 pm

• We've finished a solid review of Trigonometry, and derivatives from Math 105. Aim to make clearer and neater solutions this week.

• Attend Office Hours regularly, both with Professor Benedetto and Math Fellow Alexa Martinez.