Definite Integral Limit Definition Formulas

Definition: the Definite Integral of a function f from x = a to x = b is given by

$$(\bullet) \int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}) \Delta x$$
$$= \lim_{n \to \infty} \left[f(x_{1}) \Delta x + f(x_{2}) \Delta x + f(x_{3}) \Delta x + \dots + f(x_{i}) \Delta x + \dots + f(x_{n}) \Delta x \right]$$

Note: The definite integral is a limit of a sum! Just think about this formula as

the limiting value of the sum of the areas of finitely many (n) approximating rectangles.

To compute definite integrals the long (limit) way, follow these steps:

Step 1: Given the integral $\int_a^b f(x) dx$, pick off or identify the integrand f(x), and limits of integration a and b.

Step 2: Compute $\Delta x = \frac{b-a}{n}$. This width of each partitioned interval should be in terms of n.

Step 3: Compute $x_i = a + i\Delta x$. Leave the i as your counter. You have the left-most endpoint a from Step 1. You have width Δx from Step 2. This endpoint x_i should be in terms of i and n.

Step 4: Plug x_i and Δx into the formula (\bullet) above. Here it is again:

$$(\bullet) \left| \int_{a}^{b} f(x) \ dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}) \Delta x \right| \longleftarrow \mathbf{MEMORIZE!}$$

Step 5: Use the following formulas for sum of integers i and finish evaluating the limit in n.

$$\sum_{i=1}^{n} 1 = n$$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{i=1}^{n} i^{3} = \left(\frac{n(n+1)}{2}\right)^{2}$$

Note: your final answer for the definite integral should be a **number** after you finish the limit.