Math 105, Fall 2013
Worksheet 5, Tuesday, October 8, 2013

1. State the definition for a function g(x) that is continuous at x = —7.

g(x) is continuous at x = —7 means by definition that lim g(x) = g(=7)

r——7

2. Consider the function f(z) that is continuous at = 3. Assume that f(3) = 4.
(a) Write the definition for f(x) being continuous at x = 3.

f(zx) is continuous at x = 3 means by definition that |lim f(z) = f(3)

r—3

(b) Discuss what you know about lirrzl)) f(z) =77 Why? Be clear and justify with
T—

mathematical notation.
Since f is continuous at z = 3, we know from part (a) that lir% f(z) = f(3). But we
z—

also know from the given info that f(3) = 4. That implies liné flz)=f3) = .
x>

3. Suppose that f and ¢ are functions, and

e lim f(z) =9 o lim g(z) = —6 o limf(z) =7
e g(x) is continuous at x = 7. e f(z) is continuous at = = 4.

Evaluate the following quantities and fully justify your answers. Do not just put down
a value:

(a) f(4) = 1iIIZlL f(x) = The first equality holds because of the assumption of f
T

being continuous at x = 4. The second equality was given in the assumptions.

(b) g(7) = Jl;_}ﬂ% g(x) = The first equality holds because of the assumption of ¢

being continuous at x = 7. The second equality was given in the assumptions.

(c) Compute go f(4) =g(f(4)) =g(7) = using part (a) and part (b).

(d) Does f(3) =97  Why or why not? Use math notation.

We if f(3) = 9 because we were not told whether f is continuous

at v = 3. IF f was assumed to be continuous at z = 3, then we would know that

f(3) = lim f(z) =[9]



4. Suppose that f and g are functions, and

e limg(z)=3 e limg(z)=6 o f(3)=2
z—7 T—2
e g(x) is continuous at x =7 and z = 2. o lin})) flz)=5
z—>

Evaluate the following quantities and fully justify your answers. Do not just put down
a value:

(a) g(7) = lirr% g(x) = The first equality holds because of the assumption of g
r—r

being continuous at x = 7. The second equality was given in the assumptions.

(b) Compute go f(3) = g(f(3)) = g(2) = lir% g(z) = [6] The second equality holds
T—

because f(3) = 2 was given in the assumptions. The third equality holds because
of the assumption that of g being continuous at x = 2. The last equality was
given in the assumptions.

(¢) Compute fog(7) = f(g(7)) = f(3) = 2 The first equality holds from part (a).
The last equality was given in the assumptions.

(d) Is f(z) continuous at z = 3?7 Why or why not? Use math notation.
f(z) is not continuous at © = 3 because f(3) =|2|# |5|= lirré f(z)
T—r
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Definition: The Derivative of a function f at a number «a, denoted by f'(a), is
given by

o[ g fat 1) = fa)
()] /(@) = lim R

h—0

By the definition from class, this value is the slope of the tangent line at the given
point (a, f(a)). This value captures the steepness of the curve at that point.
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5. Suppose that f(z) =5 — 6x + 422

(a)

Compute f’(1) using (*) above. (Here a = 1)
f(1+h)—f(1) 5—6(1+h)+4(1+h)*—(5—6+4)

o e
A 7
 5—6—6h+4+8h+4h*—5+6-4 20+ 4h?
= lim = lim — —
h—0 h h—0 h
h(2+ 4h
i M2 o4 ah — 3] SLOPE!
h—0 h h—0

Write the equation of the tangent line to the curve y = f(z) at the point
where z = 1.

From part (a) we know slope=f'(1) = 2.
(That is the slope of the tangent line to the curve f(x) at the point where x = 1.)

The point is (1, f(1)) = (1,3). (You must compute the y value of the point.)

Using the point-slope form we have
y—y =m(x— 1)
y—3=2(x—1)
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If we replace a by a variable x above, we obtain the derivative function f’(z) as

(**) | f'(2) = lim

h—0

flx+h) = fx)
h

We will call this the limit definition of the derivative. Here f’(zx) is the function that
takes in any value x and spits out the derivative at . That is, the slope of the tangent
line at the point (z, f(z)).
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6. For each of the following, find f'(x) using the limit definition of the derivative (**).

(a)

flz) =2
_ 3 .3
() :}Lin% f(a:—i—hl)l f(z) :}llin% (x—i—h}i x
— —

23+ 32%2h + 3xh® + kP — 28 o 32%h + 3xh®+ hP
-l h o=

— —

. h(3z* +3zh + h?) . ) ) 5
= lim . = lim 3 + 3ah + h =[342]

3



(b) f(x)=a*

_ 4 .4
f/(a:):}llinéf(x—i_h% f(x):’llir%(x—l—hf)b x
— —
o x* + 423h + 622h2 + 4xh® + bt — 2t
a0 h
423h + 62%h? + 4zh® + ' h(42® 4 622k + 4xh? + h3)
= lim = lim
h—0 h h—0 h
—’1111%4x + 62°h + 4xh® + h* =
—
(c) flz) ==
h—0 h h—>0
. \/:v—l— —Vr (Ve+h+x . r+h—x
ho h Ve +h+yx h—>0h(\/3:—|— + V)
= lim h :hm—
h=0 h(\/x + h4\/x) =0z +h+ /T
B 1 B 1
VT VT |2y
(@) f(x) = ~
Y=g
1 1 z—(z+h)
fle+h)—f@) . 24h z . (@2+h)(z)
! — — —_— = _—
fz) = Jim h =, o,
r—x—h
. (z+h)(z) ) —h 1 ) -1 1
i W) T g —
heo hoo (z + h)(x) h b0 (2 + h)(2) 22
z+1
(©) fla) =22
r+h+1 zx+1
. fla+h)—fl@®) . x4+h—1 z-1
! _ I
L

<(a:—|—h—|—1) x—l)—(m—i—l)(m—l—h—l))
(x+h—1)(z—-1)

= lim
h—0 h

_ lim (+h+)(z—1) —(z+)@@+h-1) 1

 ho0 (x+h—1)(x—1) h

?+ah+r—z—h—1—(*+zh—z+x+h-1) 1

= lim L
h—0 (x+h—1)(z—1) h
. P+ ah+r—x—h—-1-2?-zh+r—2—h+1 1

= lim L
h—0 (x+h—1)(z—-1) h
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= lim 2 L 2
;Ho(x+h—1)(x—1) h w50 (x+h—1)(z—1)

-2 2

S (r—D(x—-1) | (z—1)2

(0 f()= o

11 (\/_—\/x+h>

fa) = i VI VP g A NTEIE Ty \C_V 1

h—0 h—0 h h—0 \/_ h
ﬁ—m iV <\/_+\/JT>
h—>0 h\/ﬁ\/_ h—)O T + hy/x VI+Vr+h
x— (z+h) r—x—h
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