Math 105, Fall 2013
Worksheet 5, Tuesday, October 8, 2013

1. State the definition for a function g(x) that is continuous at x = —7.
2. Consider the function f(z) that is continuous at z = 3. Assume that f(3) = 4.

(a) Write the definition for f(x) being continuous at x = 3.
(b) Discuss what you know about 1111:13 f(x) =77 Why? Be clear and justify with
z—

mathematical notation.

3. Suppose that f and ¢ are functions, and

e lim f(z) =9 o limg(z) = —6 o limf(z) =7
e g(x) is continuous at x = 7. e f(z) is continuous at = = 4.

Evaluate the following quantities and fully justify your answers. Do not just put down
a value:

(a) f(4) =
(b) 9(7) =

(¢) Compute go f(4) =

(d) Does f(3) =97  Why or why not? Use math notation.

4. Suppose that f and g are functions, and

e limg(z) =3 o limg(z) =6 e f(3) =
e g(x) is continuous at x =7 and z = 2. o lnr:l))f( x) =
z—

Evaluate the following quantities and fully justify your answers. Do not just put down
a value:

9(7) =
Compute go f(3) =
Compute fog(7) =

(a
(b
(c

(d) Is f(z) continuous at x = 3?7 Why or why not? Use math notation.
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Definition: The Derivative of a function f at a number a, denoted by f'(a), is
given by

o[y — o F@t 1) = F(a)
()] /(@) = Jim 2

h—0

By the definition from class, this value is the slope of the tangent line at the given
point (a, f(a)). This value captures the steepness of the curve at that point.
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. Suppose that f(x) =5 — 6z + 422

(a) Compute f’(1) using (*) above. (Here a = 1)
(b) Write the equation of the tangent line to the curve y = f(x) at the point
where x = 1.
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If we replace a by a variable = above, we obtain the derivative function f’(z) as

o | eyt 2T = @)

h—0 h

We will call this the limit definition of the derivative. Here f’'(z) is the function that
takes in any value x and spits out the derivative at x. That is, the slope of the tangent
line at the point (z, f(x)).
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. For each of the following, find f’(x) using the limit definition of the derivative (**).

(b) fla) = a*

(©) fr) =V

(@) f() =
r+1

Turn in solutions. \
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