Worksheet 4, Tuesday, October 1, 2013

• Please *show* all of your work and *justify* all of your answers.

1. Evaluate each of the following limits. Please **justify** your answers. Be clear if the limit equals a value, $+\infty$ or $-\infty$, or Does Not Exist.

(a)
$$\lim_{x \to 7} \frac{x^2 - 4x - 21}{x^2 - 3x} =$$
 (b) $\lim_{x \to 4} \frac{x^2 - 3x - 4}{|x - 4|} =$

(c)
$$\lim_{x \to 4} \frac{x^2 - 2x - 8}{x^2 - 5x + 4} =$$
 (d) $\lim_{x \to -5} \frac{\frac{1}{1 - x} - \frac{1}{6}}{x^2 + 3x - 10} =$

(e)
$$\lim_{x \to 3} \frac{x^2 - 12x + 27}{x^2 - 6x + 9} =$$
 (f) $\lim_{x \to 3} \frac{x^2 - 12x + 27}{x^2 - 9} =$

(g)
$$\lim_{x \to 4} \frac{x+2}{4-x} =$$
 (h) $\lim_{x \to -4} \frac{x+2}{x+4} =$

(i)
$$\lim_{x \to 2} \frac{3 - \sqrt{x+7}}{x^2 - 3x + 2} =$$
 (j) $\lim_{x \to 1} \frac{G(x+2) + x - 8}{G(2x) - 3x^2 - 3x + 2} =$ where $G(x) = (x-1)^2 + 3$

(k)
$$\lim_{x \to 7} \frac{x-7}{|7-x|} =$$
 (l) $\lim_{x \to 5} \frac{f(x^2) - 28}{(f(x))^2 - 10x - 14} =$ where $f(x) = x+3$

(**m**)
$$\lim_{x \to 2} \frac{x^2 - 9x + 14}{x^2 - 4x + 4} =$$
 (**n**) $\lim_{x \to 7} \frac{x^2 - 2x - 35}{x^2 - 2x + 1} =$

2.

(a) Suppose that $f(x) = \sqrt{x}$. Compute the difference quotient $\frac{f(x+h) - f(x)}{h}$. Simplify until you cancel the *h* in the denominator.

(b) Suppose that $f(x) = \sqrt{x^2 - 5x + 3}$. Compute the difference quotient $\frac{f(x+h) - f(x)}{h}$. Simplify until you cancel the *h* in the denominator.

(b) Suppose that $f(x) = \frac{1-3x}{x+2}$. Compute the difference quotient $\frac{f(x+h) - f(x)}{h}$. Simplify until you cancel the *h* in the denominator. **3.**Consider the function defined by

$$f(x) = \begin{cases} \sqrt{x-3} + 1 & \text{if } x > 3\\ 0 & \text{if } x = 3\\ (x-2)^2 & \text{if } 1 < x < 3\\ x + \frac{1}{3} & \text{if } 0 < x \le 1\\ \frac{1}{x+3} & \text{if } x < 0 \end{cases}$$

- (a) Carefully sketch the graph of f(x).
- (b) State the **Domain** of the function f(x).
- (c) Compute $\lim_{x \to -3} f(x) =$
- (d) Compute $\lim_{x\to 0} f(x) =$
- (e) Compute $\lim_{x \to 1} f(x) =$
- (f) Compute $\lim_{x\to 3} f(x) =$

(g) State all the value(s) at which f is discontinuous. Justify your answer(s) using the definition of continuity.