Math 105 Fall 2013

Worksheet 2, Tuesday, September 17, 2013

1. Let
$$g(x) = \frac{\frac{x}{x-1} - \frac{x+2}{x}}{x-2}$$
. Simplify $g(x)$. What is the domain of $g(x)$?

2. Given two functions f and g. The **Composition** of f and g is defined by

$$f \circ g(x) = f(g(x))$$

- (a) Discuss what the Domain of $f \circ g$ is.
- (b) Take $f(x) = \sqrt{x+4}$ and g(x) = x+2. Compute **and** graph both $f \circ g$ and $g \circ f$. Discuss whether or not $f \circ g$ equals $g \circ f$. (Hint: what does it mean for two functions to be equal?)
- 3. Let $f(x) = \frac{x+1}{x-1}$. Compute f(f(2)). Compute and simplify f(f(x)). Hint: first find a large formula for f(f(x)). Then simplify by finding common denominators.
- 4. Let $f(x) = \frac{1}{x+1}$. Compute and simplify $\frac{f(x+h) f(x)}{h}$. warning: $f(x+h) \neq f(x) + h$ be careful!
- 5. Let $f(x) = \frac{x-7}{x+3}$. Compute and simplify $\frac{f(x+h) f(x)}{h}$.
- 6. Simplify each of the following expressions.

(a)
$$\frac{x^2 + 6x + 8}{x^2 - 4}$$

(b)
$$\frac{x^2 + 6x + 8}{x^2 - 5x - 14}$$

(c)
$$\frac{x^2 - 6x + 8}{x^2 - x - 2}$$

(d)
$$\frac{1}{t\sqrt{1+t}} - \frac{1}{t}$$

(e)
$$\frac{t-1}{g(t^2)-3}$$
, where $g(t) = 2t+1$

(f)
$$\frac{x^2 - 13x + 42}{x^2 - 4x + 12}$$

- (g) $\frac{1}{x} \frac{1}{|x|}$ Hint: you might need two cases here. Write out the definition of |x|.
- (h) $\frac{|x+4|}{x+4}$ Hint: you might need two cases here. Write out the definition of |x+4|.
- (i) Let $f(x) = \frac{1}{x}$. Compute and simplify $\frac{f(t-1) 2f(t)}{t^2 4}$

Recall that $\lim_{x\to a^+} f(x) = L$ is the **Right Hand Limit**. We will denote this as **RHL**. It means you are studying the limiting value (if it exists) of the output function values as the input values approach a from the right of a. Also recall that $\lim_{x\to a^-} f(x) = L$ is the **Left Hand Limit**. We will denote this as **LHL**. It means you are studying the limiting value (if it exists) of the output function values as the input values approach a from the left of a.

We write $\lim_{x\to a} f(x) = L$ to represent the full **two-sided limit**. We have the following result.

Theorem:
$$\lim_{x\to a} f(x) = L$$
 if and only if $\lim_{x\to a^+} f(x) = L$ and $\lim_{x\to a^-} f(x) = L$.

That is, the two-sided limit exists at a if and only if **both** the one-sided limits, from the right and from the left, exist and are equal. If $RHL \neq LHL$ then we say the two-sided limit Does Not Exist or **DNE**.

7. Consider the function defined piece-wise by $f(x) = \begin{cases} 2-x & \text{if } x < -1 \\ x+4 & \text{if } -1 < x \le 1 \\ (x-2)^2 & \text{if } x > 1 \end{cases}$

Graph f(x) carefully and find its Domain and Range. Compute $\lim_{x\to 1^+} f(x)$. Compute $\lim_{x\to 1^-} f(x)$. Compute $\lim_{x\to 1} f(x)$, if it exists.

8. Consider the function defined by

$$f(x) = \begin{cases} \sqrt{x-4} & \text{if } x > 4 \\ 8-2x & \text{if } x < 4 \end{cases}$$

Graph f(x) carefully and find its Domain and Range. Compute $\lim_{x\to A} f(x)$, if it exists.

Hint: You might want to investigate one-sided limits on your own...

Turn in your solutions.