Name:_____

Amherst College DEPARTMENT OF MATHEMATICS Math 105 Midterm Exam #3 December 6, 2013

• This is a closed-book examination. No books, notes, calculators, cell phones, communication devices of any sort, webpages, or other aids are permitted.

• Simplify your answers if required.

 \bullet Please show all of your work and justify all of your answers. (You may use the backs of pages for additional work space.)

Problem	Score	Possible Points
1		15
_		
2		20
3		20
4		15
5		20
6		10
Total		100

1. [15 Points] Critical Numbers

(a) Find critical numbers for the function $f(x) = \frac{x^2 + 1}{x - 3}$.

(b) Find the critical numbers for $f(x) = x^{\frac{4}{3}} - 4x^{\frac{1}{3}}$.

2. [20 Points] Absolute Extreme Values

(a) Find the absolute maximum and absolute minimum values of

$$G(x) = (x-3)^2(x+2)^3$$
 on $[0,4]$.

(b) Find the absolute maximum and absolute minimum values of

$$F(x) = x\sqrt{4 - x^2}$$
 on $[-1, 2]$.

3. [20 Points] Related Rates

A conical paper cup of water is 4 inches across the entire top and 5 inches deep. It has a hole in the bottom point and is leaking water at 2 cubic inches per second. At what rate is the height of the water level decreasing when the water height is 1 inch?

*** Recall the volume of the cone is given by
$$V = \frac{1}{3}\pi r^2 h^{***}$$

4. [15 Points] Limits at Infinity

(a)
$$\lim_{x \to \infty} \frac{x^9 + 8x^7 + 6x^5 + 4}{3x^2 + 1}$$

(b)
$$\lim_{x \to -\infty} \frac{1 - x^3}{7x^3 + x^2 - 100}$$

(c)
$$\lim_{x \to \infty} \frac{x^2 - x + 1}{2x^5 + 7x^2 + 3}$$

5. [20 Points] **Curve Sketching** Let $f(x) = \frac{-x^2 + x + 2}{x^2 - 2x + 1}$.

For this function, discuss domain, vertical and horizontal asymptotes, intervals of increase or decrease, local extreme value(s), concavity, and inflection point(s). Then use this information to present a detailed and labelled sketch of the curve.

Take my word for it that (you do **NOT** have to compute these)

$$f'(x) = \frac{x-5}{(x-1)^3}$$
 and $f''(x) = \frac{-2x+14}{(x-1)^4}$.

6. [10 Points] Position, Velocity, Acceleration

A man stands on the edge of a bridge over a river. He throws a stone straight upward in the air with an initial velocity of 64 feet per second. The ball reaches a height of $\mathbf{s}(\mathbf{t}) = -\mathbf{16t^2} + \mathbf{64t} + \mathbf{80}$ feet in t seconds above the water. Answer the following questions:

(a) What is the intitial height of the stone?

(b) What is the maximum height that the stone reaches?

(c) What is the stone's velocity at time t = 1 second? Why is the velocity positive at time t = 1 second?

(d) What is the stone's velocity at time t = 3 seconds? Why is the velocity positive at time t = 3 seconds?

(e) At what time will the stone hit the water? (Hint: position s(t) = 0)

(f) What is the stone's velocity when it hits the water?

(g) What is the stone's acceleration at any time t?

OPTIONAL BONUS

OPTIONAL BONUS #1