• This is a closed-book examination. No books, notes, calculators, cell phones, communication devices of any sort, or webpages, or other aids are permitted.

• Please *show* all of your work and *justify* all of your answers.

1. Consider the line L given by $x + 3y = 6$.
 (a) Sketch this line L.
 (b) Find the equation of the new line M that is **perpendicular** to the first line L, $x + 3y = 6$, and passes through the point $(1, -2)$.
 (c) Sketch this new line M found in (b).

2. Evaluate each of the following limits. Please *justify* your answers. Be clear if the limit equals a value, $+\infty$ or $-\infty$, or Does Not Exist.
 (a) $\lim_{x \to -7} \frac{x^2 + 5x - 14}{x^2 - 4x + 4} =$
 (b) $\lim_{x \to 4} \frac{x^2 - 9x + 20}{|4 - x|} =$
 (c) $\lim_{x \to -6} \frac{f(x^2) + 5x - 8}{[f(x)]^2 + 5x + 14} =$ where $f(x) = x + 2$
 (d) $\lim_{x \to 2} \frac{x^2 + 5x - 14}{x^2 - 4x + 4} =$
 (e) $\lim_{x \to 8} \frac{3 - \sqrt{x + 1}}{x^2 - 7x - 8} =$
 (f) $\lim_{x \to 4} \frac{3 - x - \frac{3}{x - 5}}{x^2 - x - 12} =$
 (g) $\lim_{x \to -3} \frac{x - 5}{x + 3} =$
 (h) $\lim_{x \to 8} \frac{1}{(x - 8)^2} =$
3. Suppose that \(f(x) = \frac{x + 7}{x - 3} \). Compute the difference quotient \(\frac{f(x + h) - f(x)}{h} \). Simplify your answer until the \(h \) in the denominator cancels.

4. Consider the two functions \(f(x) = \frac{1 + x}{1 - x} \) and \(g(x) = \frac{1}{x} \).

 (a) Compute \(f \circ g(x) \). Simplify your answer to a single fraction. State the Domain.

 (b) Compute \(g \circ f(x) \). Simplify your answer to a single fraction. State the Domain.

 (c) Compute \(f \circ f(x) \). Simplify your answer to a single fraction. State the Domain.

5. Consider the function defined by

\[
f(x) = \begin{cases}
2 & \text{if } x \geq 11 \\
\sqrt{x - 7} & \text{if } 7 < x < 11 \\
1 & \text{if } x = 7 \\
7 - x & \text{if } 0 < x < 7 \\
16 - x^2 & \text{if } -4 < x \leq 0 \\
\frac{1}{x + 4} & \text{if } x < -4
\end{cases}
\]

 (a) Carefully sketch the graph of \(f(x) \).

 (b) State the Domain of the function \(f(x) \).

 (c) Compute \(\lim_{{x \to -4}} f(x) = \)

 (d) Compute \(\lim_{{x \to 0}} f(x) = \)

 (e) Compute \(\lim_{{x \to 7}} f(x) = \)

 (f) Compute \(\lim_{{x \to 11}} f(x) = \)

 (g) State the value(s) at which \(f \) is discontinuous. Justify your answer(s) using the definition of continuity discussed in class.