Name:_____

Amherst College DEPARTMENT OF MATHEMATICS Math 105 Midterm Exam #1 October 4, 2013

• This is a closed-book examination. No books, notes, calculators, cell phones, communication devices of any sort, webpages, or other aids are permitted.

• Simplify your answers.

 \bullet Please show all of your work and justify all of your answers. (You may use the backs of pages for additional work space.)

Problem	Score	Possible Points
1		10
I		10
2		40
3		10
4		10
5		10
6		20
Total		100

1. [10 Points] Consider the line L given by 4x + 2y = 7.

(a) Sketch this line L.

(b) Find the equation of the new line M that is **perpendicular** to the first line L, 4x + 2y = 7, and passes through the point (4, -1).

(c) Sketch this new line M found in (b).

2. [40 Points] Evaluate each of the following limits. Please **justify** your answers. Be clear if the limit equals a value, $+\infty$ or $-\infty$, or Does Not Exist.

(a)
$$\lim_{x\to 3} \frac{\sqrt{x+1}-2}{x-3} =$$

(b)
$$\lim_{x \to 5} \frac{x^2 - 3x - 10}{|x - 5|} =$$

(c)
$$\lim_{x \to 1} \frac{x^2 - 5x + 3}{x^2 - 2x} =$$

2. (Continued) Evaluate each of the following limits. Please justify your answers. Be clear if the limit equals a value, $+\infty$ or $-\infty$, or Does Not Exist.

(d)
$$\lim_{x\to 3} \frac{\frac{2}{x-1}-\frac{3}{x}}{x-3} =$$

(e)
$$\lim_{x \to -3} \frac{G(x^2) - x - 9}{G(x+6) + x^2 + x - 6} =$$
 where $G(x) = x - 3$.

(f)
$$\lim_{x \to 2} \frac{x^2 - 7x + 10}{x^2 - 4x + 4} =$$

3. [10 Points] Consider the two functions $f(x) = \frac{1}{x}$ and g(x) = x - 5. Compute each of the following. Simplify your answers.

(a) f(x+3) =

(b) $f(x^2) + 3 =$

(c)
$$g(x^2) =$$

(d) $[g(x)]^2 =$

- (e) $g \circ f(x) =$
- (f) $f \circ f(x) =$
- (g) $f \circ g(x) =$
- (h) $g \circ g(x) =$

4. [10 Points] For each of the following problems below, sketch any graph for the function f with the description given.

(a) Sketch a graph of any function f for which $\lim_{x \to 2} f(x)$ Exists

(b) Sketch a graph of any function
$$f$$
 for which $\lim_{x \to 2} f(x) = 5$.

(c) Sketch a graph of any function
$$f$$
 for which $\lim_{x \to 2} f(x)$ Does not Exist

(d) Sketch a graph of any function f for which
$$\lim_{x \to 2} f(x) = -1$$
 and $f(2) = 4$.

(e) Sketch a graph of any function
$$f$$
 for which $\lim_{x \to 2} f(x) = -\infty$ and $f(2)$ is undefined.

- **5.** [10 Points] Suppose that $f(x) = \sqrt{x-3}$ and g(x) = x+5.
- (a) Compute and graph $f \circ g(x)$. Also state the Domain of $f \circ g(x)$.

(b) Compute and graph $g \circ f(x)$. Also state the Domain of $g \circ f(x)$.

6. [20 Points] Consider the function defined by

$$f(x) = \begin{cases} \frac{1}{x-3} & \text{if } x > 3\\ x^2 + 1 & \text{if } 0 < x < 3\\ -2 & \text{if } x = 0\\ x+1 & \text{if } -2 < x < 0\\ 5 - (x+2)^2 & \text{if } x < -2 \end{cases}$$

(a) Carefully sketch the graph of f(x).

(b) State the **Domain** of the function f(x).

 ${\bf 6.}$ (Continued) Continue to consider the function defined by

$$f(x) = \begin{cases} \frac{1}{x-3} & \text{if } x > 3\\ x^2 + 1 & \text{if } 0 < x < 3\\ -2 & \text{if } x = 0\\ x+1 & \text{if } -2 < x < 0\\ 5 - (x+2)^2 & \text{if } x < -2 \end{cases}$$

(c) Compute
$$\begin{cases} \lim_{x \to -2^+} f(x) = \\ \lim_{x \to -2^-} f(x) = \\ \lim_{x \to -2} f(x) = \end{cases}$$

(d) Compute
$$\begin{cases} \lim_{x \to 0^+} f(x) = \\ \lim_{x \to 0^-} f(x) = \\ \lim_{x \to 0} f(x) = \end{cases}$$

(e) Compute
$$\begin{cases} \lim_{x \to 3^+} f(x) = \\ \lim_{x \to 3^-} f(x) = \\ \lim_{x \to 3} f(x) = \end{cases}$$

(f) State the value(s) at which f is **discontinuous**. Justify your answer(s) using definition of continuity discussed in class.