Math 105 Final Examination December 16, 2013

1. [40 Points] Evaluate each of the following limits. Please justify your answers. Be clear if the limit equals a value, $+\infty$ or $-\infty$, or Does Not Exist.

(a)
$$\lim_{x \to -5} \frac{x^2 + 2x - 15}{x^2 - 2x - 35}$$
 (b) $\lim_{x \to 2} \frac{g(x^2) + x - 3}{[g(x+1)]^2 - x + 2}$ where $g(x) = x - 3$

(c)
$$\lim_{x \to 5} \frac{x^2 - 4x - 5}{|5 - x|}$$
 (d)
$$\lim_{x \to 5} \frac{5 - x}{\sqrt{x + 4} - 3}$$
 (e)
$$\lim_{x \to 1} \frac{x^2 - 8x + 7}{x^2 - 2x + 1}$$
 (f)
$$\lim_{x \to -6} \frac{\frac{x - 3}{x + 2} - \frac{x - 3}{x}}{x + 6}$$

2. [40 Points] Compute each of the following derivatives.

(a)
$$f'(1)$$
, where $f(x) = \sqrt{\sqrt{x} + \frac{3}{\sqrt{x}}}$. Simplify.
(b) $\frac{d}{dx} \left(\frac{\sqrt{\frac{x^8}{5} - \frac{5}{x^8}}}{x^{\frac{8}{5}} - \frac{1}{x^{\frac{5}{5}}}} \right)$ Do **not** simplify.
(c) $g''(x)$, where $g(x) = \frac{x^2}{1 - 2x^2}$ Simplify.
(d) $\frac{dy}{dx}$, if $x^2y^4 + 5x^{\frac{6}{5}} = xy + 8$. Simplify.
(e) $g'(x)$, where $g(x) = \left(\frac{3}{x^2} - \frac{2}{x^3}\right)^9 \left(x^{\frac{5}{6}} - \frac{1}{x}\right)$. Do **not** simplify.
(f) $f'(x)$, where $f(x) = x^{\frac{1}{4}} + (1 + x)^{\frac{1}{4}} + \left(1 + x^{\frac{1}{4}}\right)^{\frac{1}{4}} + \frac{1}{x^{\frac{1}{4}}} + \frac{1}{1 + x^{\frac{1}{4}}} + \frac{1}{(1 + x)^{\frac{1}{4}}} + \frac{1}{(1 + x)$

Do **not** simplify.

3. [15 Points] Let $f(x) = \frac{3-x}{x+7}$.

(a) Compute the derivative of f using the **limit definition** of the derivative.

(b) Compute the derivative of f using the Quotient Rule.

(c) Compute the second derivative f''(x).

4. [10 Points] Consider the equation $y^3 + 8x = 8xy + \sqrt{x}$. Find the equation of the tangent line to this curve at the point (1, 1).

5. [15 Points] Find the absolute maximum and absolute minimum values of

$$f(x) = \frac{\sqrt{x-1}}{x}$$
 on [1,10].

6. [20 Points] Let $f(x) = \frac{-x^2 + 5x - 4}{x^2 - 6x + 9} = \frac{-x^2 + 5x - 4}{(x - 3)^2}$.

For this function, discuss domain, vertical and horizontal asymptote(s), interval(s) of increase or decrease, local extreme value(s), concavity, and inflection point(s). Then use this information to present a detailed and labelled sketch of the curve. **Tip**: $f(7) = -\frac{9}{8}$ and $f(9) = -\frac{10}{9}$.

Take my word that $f'(x) = \frac{x-7}{(x-3)^3}$ and $f''(x) = \frac{-2x+18}{(x-3)^4}$.

7. [20 Points] A 10 foot ladder is resting on a vertical wall. The base of the ladder is sliding away from the wall at a rate of 1 foot every second. How fast is the top of the ladder sliding down the wall when the top of the ladder is three feet above the ground?

8. [20 Points] You need to construct a box with a square base with a fixed volume of 24 cubic feet. The material for the bottom and top costs \$3 per square foot, and the material for the sides costs \$1 per square foot. What are the **dimensions** that minimize the cost required to build such a box? What is that **minimum cost**?

(Don't forget to state the common sense bounds, that is, the domain of the function that you are maximizing or minimizing.)

9. [20 Points] Consider the function defined by

$$f(x) = \begin{cases} \frac{1}{x-4} & \text{if } x > 4\\ x^2 + 1 & \text{if } 0 < x < 4\\ -3 & \text{if } x = 0\\ x+1 & \text{if } -2 < x < 0\\ 3 - (x+2)^2 & \text{if } x \le -2 \end{cases}$$

(a) Carefully sketch the graph of f(x).

(b) State the **Domain** of the function f(x).

(f) State the value(s) at which f is **discontinuous**. Justify your answer(s) using the definition of continuity discussed in class.