Worksheet 9, Saturday, July 6, 2019

- 1. Graph the function $y = \sin x$ on the interval $[0, 2\pi]$. Answer the following:
 - (a) $\sin 0 =$
 - (b) $\sin \pi =$
 - (c) $\sin \frac{\pi}{2} =$
 - (d) $\sin \frac{3\pi}{2} =$
 - (e) $\sin 2\pi =$
- 2. Graph the function $y = \cos x$ on the interval $[0, 2\pi]$. Answer the following:
 - (a) $\cos 0 =$
 - (b) $\cos \pi =$
 - (c) $\cos \frac{\pi}{2} =$
 - (d) $\cos \frac{3\pi}{2} =$
 - (e) $\cos 2\pi =$
- 3. Compute the following trig. values. Justify by showing the work on the Unit Circle.
 - (a) Compute $\sin \frac{2\pi}{3} =$
 - (b) Compute $\cos \frac{2\pi}{3} =$
 - (c) Compute $\sin \frac{5\pi}{3} =$
 - (d) Compute $\cos \frac{5\pi}{3} =$
 - (e) Compute $\cos \frac{3\pi}{4} =$
 - (f) Compute $\tan \frac{5\pi}{6} =$
 - (g) Compute $\sin \frac{11\pi}{6} =$

FACT: The derivative of $\sin x$ is equal to $\cos x$. That is,

$$\boxed{\frac{d}{dx}\sin x = \cos x} \qquad \mathbf{Memorize.}$$

FACT: The derivative of $\cos x$ is equal to $-\sin x$. That is,

$$\boxed{\frac{d}{dx}\cos x = -\sin x}$$
 Memorize.

- 4. For each function below, find the equation of the tangent line to the curve f(x) at the given x-coordinate.
 - (a) $f(x) = \sin x \text{ at } x = 0.$
 - (b) $f(x) = \cos x \text{ at } x = \frac{\pi}{6}$.
 - (c) $f(x) = \tan x \text{ at } x = \frac{\pi}{3}$.
- 5. Use the above facts and differentiaton rules to show that

$$\boxed{\frac{d}{dx}\tan x = \sec^2 x}$$
 Memorize.

6. Use the above facts and differentiaton rules to show that

$$\boxed{\frac{d}{dx}\sec x = \sec x \tan x} \qquad \mathbf{Memorize.}$$

Practice:

$$\frac{d}{dx}\sin(2x) = \cos(2x)2$$

$$\frac{d}{dx}\sin^2 x = \frac{d}{dx}(\sin x)^2 = 2\sin x(\cos x)$$

$$\frac{d}{dx}\sin^2(3x) = \frac{d}{dx}(\sin(3x)^2 = 2\sin(3x)(\cos(3x))3$$

7. Let $W(x) = \cos^2(2x) + \tan(2x) + 3\sec x$. Compute $W'\left(\frac{\pi}{6}\right)$. Simplify your answer completely.

- 8. Compute f'(x) where $f(x) = \cos^4(x^3 5)$. Simplify.
- 9. Compute f'(x) where $f(x) = \frac{\cos(3x)}{\tan x + \sin(5x^2)}$. Do not simplify.
- 10. Compute the derivative $\frac{dy}{dx}$ for the curve $y^2 + \cos x = xy$.

Turn in your own solutions.