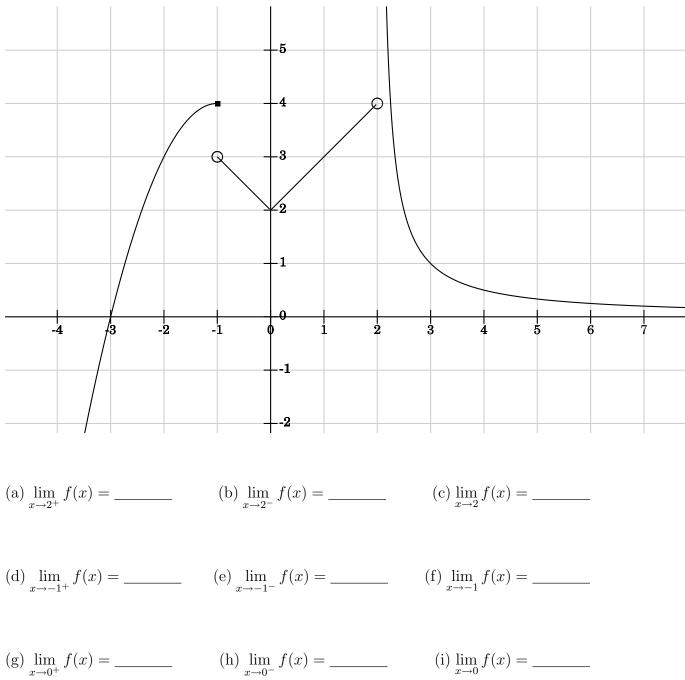
Summer Academy, Calculus with Algebra, 2019

Worksheet 3, Thursday, June 27, 2019

1. Consider $f(x) = \sqrt{x-7}$. Compute $\frac{f(x+h) - f(x)}{h}$. Make sure you simplify enough to cancel the *h* in the denominator.

Please read the following carefully:

Recall that $\lim_{x\to a^+} f(x) = L$ is the **Right Hand Limit**. We will denote this as **RHL**. It means you are studying the limiting value (if it exists) of the output function values as the input values approach *a from the right of a*. Also recall that $\lim_{x\to a^-} f(x) = L$ is the **Left Hand Limit**. We will denote this as **LHL**. It means you are studying the limiting value (if it exists) of the output function values as the input values approach *a from the right of a*.


We write $\lim_{x \to a} f(x) = L$ to represent the full **two-sided limit**. We have the following result.

Theorem: $\lim_{x \to a} f(x) = L$ if and only if $\lim_{x \to a^+} f(x) = L$ and $\lim_{x \to a^-} f(x) = L$.

That is, the two-sided limit exists at a if and only if **both** the one-sided limits, from the right and from the left, exist and are equal. If $RHL \neq LHL$ then we say the two-sided limit Does Not Exist or **DNE**.

- 2. Sketch the graph of $f(x) = x^2$. Compute the following limits.
 - (a) $\lim_{x \to 0^+} f(x) =$ (b) $\lim_{x \to 0^-} f(x) =$ (c) $\lim_{x \to 0} f(x) =$
- 3. Sketch the graph of $f(x) = 3 (x 1)^2$. Compute the following limits.
 - (a) $\lim_{x \to 1^+} f(x) =$ (b) $\lim_{x \to 1^-} f(x) =$ (c) $\lim_{x \to 1} f(x) =$

4. Consider the following graph of f(x). Answer the questions below. Justify your answers when necessary.

(j) $\lim_{x \to \infty} f(x) =$ _____

(k) $\lim_{x \to -\infty} f(x) =$ _____

5. Consider the function defined piece-wise by $f(x) = \begin{cases} 2-x & \text{if } x < -1 \\ x+4 & \text{if } -1 < x \le 1 \\ (x-2)^2 & \text{if } x > 1 \end{cases}$

Graph f(x) carefully and find its Domain and Range. Compute each of the following, and justify when necessary.

(a)
$$\lim_{x \to 1^+} f(x) =$$
 (b) $\lim_{x \to 1^-} f(x) =$ (c) $\lim_{x \to 1} f(x) =$

(d)
$$\lim_{x \to -1^+} f(x) =$$
 (e) $\lim_{x \to -1^-} f(x) =$ (f) $\lim_{x \to -1} f(x) =$

6. Consider the function defined by

$$f(x) = \begin{cases} \sqrt{x-4} & \text{if } x > 4 \\ \\ 8-2x & \text{if } x < 4 \end{cases}$$

Graph f(x) carefully and find its Domain and Range. Compute $\lim_{x \to 4} f(x)$, if it exists. Hint: You might want to investigate one-sided limits on your own...

7. Consider the function defined by

$$f(x) = \begin{cases} x+1 & \text{if } x < -1 \\ x^2 & \text{if } -1 \le x < 1 \\ 2-x & \text{if } x \ge 1 \end{cases}$$

Graph f(x) carefully. Then determine the values a for which $\lim_{x \to a} f(x)$ exists.

- 8. Compute the following limits. Justify your answers. Be clear if they equal a value, or $+\infty$, $-\infty$, or DNE.
 - (a) $\lim_{x \to 2} \frac{x^2 + 6x + 8}{x + 2}$ (b) $\lim_{x \to 2} \frac{x^2 - 6x + 8}{x - 2}$

(c)
$$\lim_{x \to -3} \frac{x^2 + 4x + 3}{x^2 - 2x - 15}$$

(d)
$$\lim_{t \to 1} \frac{t-1}{g(t^2)-3}$$
 where $g(t) = 2t+1$.

(e)
$$\lim_{x \to -5} \frac{\frac{1}{4-x} - \frac{1}{9}}{x+5}$$

(f)
$$\lim_{x \to 4} \frac{|x-4|}{x-4}$$
 (challenge)

Turn in your solutions